Please wait a minute...
材料研究学报  2016, Vol. 30 Issue (3): 179-185    DOI: 10.11901/1005.3093.2015.429
  本期目录 | 过刊浏览 |
硫化氢腐蚀对X80管线钢断裂韧性的影响
王晶(), 栾春波
北京工业大学机械工程与应用电子技术学院 北京 100022
Effect of Hydrogen Sulfide Corrosion on Fracture Toughness of X80 Pipeline Steel
WANG Jing**(), LUAN Chunbo
(College of Mechanical Engineering and Applied Electronics Technology, BeijingUniversity of Technology, Beijing 100022, China)
引用本文:

王晶, 栾春波. 硫化氢腐蚀对X80管线钢断裂韧性的影响[J]. 材料研究学报, 2016, 30(3): 179-185.
Jing WANG, Chunbo LUAN. Effect of Hydrogen Sulfide Corrosion on Fracture Toughness of X80 Pipeline Steel[J]. Chinese Journal of Materials Research, 2016, 30(3): 179-185.

全文: PDF(971 KB)   HTML
摘要: 

测试X80管线钢分别在未腐蚀状态下及饱和H2S预腐蚀后的δ-Δa阻力曲线; 分析了H2S腐蚀对其裂纹扩展阻力曲线,断裂韧性,塑性功等方面影响.结果表明, H2S腐蚀后X80材料KIC下限为75.43 MPam½.对比分析H2S腐蚀前后测试结果, 发现H2S腐蚀会对X80钢的断裂韧性产生显著影响: 未腐蚀试样的裂纹扩展阻力曲线明显高于H2S腐蚀后的; H2S腐蚀前后材料的稳定裂纹扩展下的启裂韧度δ0.2BL分别为0.740 mm和0.365 mm, 前者是后者的2.02倍; 扩展量Δa相近的情况下, 未腐蚀试样的裂纹扩展过程所需塑性功是H2S预腐蚀后的2.29倍左右, H2S腐蚀明显会降低X80材料的断裂韧度.因此, 管道在输送天然气过程中应尽量避免H2S的腐蚀, 保证材料的韧性不受破坏.

关键词 金属材料断裂韧性阻力曲线H2S腐蚀    
Abstract

Fracture toughness of X80 pipeline steel in a simulated petrochemical environment is studied in this paper. Original specimens and saturated H2S pre-corroded specimens were tested respectively and δ-Δa resistance curves were obtained, while the influence of hydrogen sulfide corrosive environment on the resistance curve, fracture toughness and plastic work of X80 pipeline steel was analyzed. It follows that the lower limit of KIC of the pre-corroded X80 steel is 75.43 MPam½, and the hydrogen sulfide corrosion affect significantly on the fracture toughness of X80 steel: the crack growth resistance curve obtained from original specimens is much higher than that of the pre-corroded specimens; the fracture toughness of stable crack propagation δ0.2BL is 0.740 mm and 0.365 mm respectively, and the former is 2.02 times of the latter. In case for a given amount of crack propagation Δa, the plastic work of the original specimen is about 2.29 times of the pre-corroded specimen. Hydrogen sulfide corrosion reduced the fracture toughness of the X80 steel remarkablely. Thus, in the course of natural gas pipeline, hydrogen sulfide corrosive environment should be avoided to keep the steel a proper high toughness to prevent damage.

Key wordsmetallic materials    fracture toughness    resistance curve    hydrogen sulfide corrosion
收稿日期: 2015-07-27     
ZTFLH:  O346.1+2  
基金资助:* 国家自然科学基金青年基金资助项目11302007
作者简介: 王晶
E/GPa Rm/MPa RP0.2/MPa A/% Z/%
206.0 767.0 661.0 19.1 77.7
表1  X80管线钢的主要力学性能
图1  三点弯曲试件示意图
Sample
number
Fmax
/ kN
FQ
/ kN
Fmax/FQ a0
/ mm
B
/ mm
W-a0
/ mm
g1 KQ
/MPam1/2
RP0.2
/MPa
2.5KQRP0.22
/ mm
Validity judgment
10# 23.85 15.57 1.53>1.10 15.64 15.01 14.36 2.84 59.93 661.0 20.55 Invalid
13# 24.49 16.31 1.50>1.10 14.53 15.10 15.27 2.54 65.79 661.0 24.77 Invalid
14# 24.93 18.99 1.31>1.10 14.71 15.02 15.29 2.58 75.43 661.0 32.55 Invalid
表2  硫化氢预腐蚀后X80管线钢平面应变断裂韧度KIC的测试结果
图2  硫化氢预腐蚀后X80管线钢的加载力F与裂纹张开口位移V曲线 (a) 10号试件试验曲线; (b) 13号试件试验曲线; (c) 14号试件试验曲线
Sample
number
B
/ mm
W
/ mm
S
/ mm
F
/ kN
g1 ν Rp0.2
/ MPa
E
/ GPa
a0
/ mm
Δa
/ mm
Vp
/ mm
z
/ mm
δ
/ mm
A1 15.02 30.10 120.00 31.56 2.58 0.30 661.00 206.00 14.73 0.63 2.81 2.00 0.81
A2 15.03 30.00 120.00 28.50 2.62 0.30 661.00 206.00 14.84 1.34 3.78 2.00 1.05
A3 15.00 30.20 120.00 24.09 2.62 0.30 661.00 206.00 14.81 3.01 5.03 2.00 1.36
A4 14.99 30.20 120.00 26.81 2.66 0.30 661.00 206.00 15.01 2.15 4.63 2.00 1.25
A5 15.10 30.02 120.00 27.86 2.66 0.30 661.00 206.00 15.04 0.83 2.74 2.00 0.76
A6 15.01 30.02 120.00 27.07 2.58 0.30 661.00 206.00 14.71 2.28 4.18 2.00 1.15
表3  未腐蚀试件的启裂韧度δ0.2BL测试结果
Sample
number
B
/ mm
W
/ mm
S
/ mm
F
/ kN
g1 ν Rp0.2
/ MPa
E
/ GPa
a0
/ mm
Δa
/ mm
Vp
/ mm
z
/ mm
δ
/ mm
3# 15.10 29.82 120.00 27.88 2.58 0.30 661.00 206.00 14.57 0.25 0.78 2.00 0.26
4# 14.90 29.80 120.00 27.93 2.54 0.30 661.00 206.00 14.54 0.51 1.42 2.00 0.43
5# 15.02 29.72 120.00 29.40 2.54 0.30 661.00 206.00 14.43 0.35 1.13 2.00 0.36
8# 15.11 30.10 120.00 16.46 2.66 0.30 661.00 206.00 15.08 1.18 1.90 2.00 0.52
11# 15.00 30.00 120.00 19.87 3.63 0.30 661.00 206.00 15.90 1.87 2.31 2.00 0.61
12# 15.09 29.92 120.00 16.10 4.43 0.30 661.00 206.00 16.21 2.98 3.03 2.00 0.76
表4  硫化氢预腐蚀后的启裂韧度δ0.2BL测试结果
图3  未腐蚀(a)和(b)硫化氢预腐蚀后试样的δ-Δa阻力曲线
图4  未腐蚀(a)和(b)硫化氢预腐蚀后试样的δQ0.2BL及数据分布的有效性判断
Experiment
condition
Data distribution requirements δQ0.2BL δmax 1.87(Rm/Rp0.2) 2da0.2BL Validity judgment
Original Meet conditions 0.740 0.749 2.170 0.886 Valid
Pre-corroded Meet conditions 0.365 0.686 2.170 0.451 Valid
表5  δQ0.2BL的数值及有效性判定
图5  硫化氢预腐蚀前后X80管线钢的阻力曲线对比图
图6  硫化氢预腐蚀前后X80管线钢的位移-力曲线对比图
1 Zhang L, Shan G, Research and trial production of X80 pipeline steel with high toughness using acicular ferrite, Engineering Science, 3(3), 91(2005)
2 Sose E, Alvarez R J, Time correlations in the dynamicas of hazard ous material pipelines incidents, J .Hazard Mater., 165(3), 1204(2009)
3 Alamilia J L, Espinose M, Sose E, Modelling steel corrosion damage in soil environment, Corros. Sci., 51(11), 2628(2009)
4 XI Yun tao, LIU Daoxin, ZHANG Xiaohua, Research on stress corrosion cracking behavior of X80 pipeline steel in H2S environment, Petroleum Machinery, 34(8), 7(2006)
4 (奚运涛, 刘道新, 张晓化, X80焊管H2S环境应力腐蚀开裂行为研究, 石油机械, 34(8), 7(2006))
5 WANG Bingying, HUO Lixing, ZHANG Yufeng, WANG Dongpo, H2S stress corrosion test of welded joint for X80 pipeline steel, Pressure Container, 23(7), 15(2006)
5 (王炳英, 霍立兴, 张玉凤, 王东坡, X80管线钢焊接接头的硫化氢应力腐蚀试验研究, 压力容器, 23(7), 15(2006))
6 CHEN Ye, FEI Jingyin, WAN Binghua, WANG Lei, Stress corrosion crack of buried X80 oil pipeline and its protection, Hot Working Processes, 40(22), 55(2011)
6 (陈叶, 费敬银, 万冰华, 王磊, 埋地X80石油管道的应力腐蚀与防护, 热加工工艺, 40(22), 55(2011))
7 GB/T 21143–2007, Metallic materials-unified method of test for determination of quasistatic fracture toughness
7 (GB/T 21143–2007, 金属材料准静态断裂韧度的统一试验方法)
8 NACE MR0175–97, Sulfide stress cracking resistant metallic materials for oilfield equipment, 1997
9 GB/T8650–2006, Evaluation of pipeline and pressure vessel steels for resistance to hydrogen-induced cracking
9 (GB/T8650–2006, 管线钢和压力容器钢抗氢至开裂评定方法)
10 CHU Wuyang, Hydrogen Damage and Delayed Fracture (Beijing, Metallurgical Industry Press, 1988)p. 57
10 (褚武扬, 氢损伤和滞后断裂 (北京, 冶金工业出版社, 1988)p.57)
11 HONG Qi, CHEN Yexin, Effects of static and dynamic hydrogen charging on tensile properties of SM490B clean steel, Shanghai Metals, 4(1), 25(2012)
11 (洪旗, 陈业新, 静态及动态充氢对SM490B纯净钢拉伸性能的作用, 上海金属, 34(1), 25(2012))
12 CHEN Chi, CAI Qigong, WANG Renzhi, Engineering Fracture Mechanics (Beijing, National Defence Industry Press, 1977)p.331
12 (陈箎, 蔡其巩, 王仁智, 工程断裂力学 (北京, 国防工业出版社, 1977)p.331)
13 LI Qingfen, Fracture Mechanics and the Engineering Application (Harbin: Harbin Engineering University Press, 2007)p.43
13 (李庆芬,断裂力学及其工程应用 ( 哈尔滨, 哈尔滨工程大学出版社, 2007)p.43)
14 WANG Jing, LI Xiaoyang, ZHANG Yiliang, Low cycle fatigue crack growth rate in H2S environments, Journal of Mechanical Strength, 31(3), 972(2009)
14 (王晶, 李晓阳, 张亦良, 硫化氢环境中低周疲劳裂纹扩展速率的研究, 机械强度, 31(3), 972(2009))
15 WANG Junqiang, SHUAI Jian, LI Hongli, Measurement and assessment of resistance curve based on crack propagation for pipeline steel, Science Technology and Engineering, 23(12), 5693(2012)
15 (王俊强, 帅健, 李洪利, 基于裂纹扩展的管道钢阻力曲线测试评估, 科学技术与工程, 23(12), 5693(2012))
16 E. V. Chatzidouros, V. J. Papazoglou, T. E. Tsiourva, D. I. Pantelis, Hydrogen effect on fracture toughness of pipeline steel welds with in situ hydrogen charging, Hydrogen Energy, 36(10), 12626(2011)
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.