Please wait a minute...
材料研究学报  2016, Vol. 30 Issue (2): 81-86    DOI: 10.11901/1005.3093.2015.230
  本期目录 | 过刊浏览 |
SIMP钢和T91钢在800℃的高温氧化行为*
石全强1,2, 刘坚1,2, 严伟2,3, 王威2,3, 单以银2,3, 杨柯2()
1. 中国科学院大学 北京 100049
2. 中国科学院金属研究所 沈阳 110016
3. 中国科学院核用材料与安全评价重点实验室 中国科学院金属研究所 沈阳 110016
High Temperature Oxidation Behavior of SIMP Steel and T91 Steel at 800℃
SHI Quanqiang1,2, LIU Jian1,2, YAN Wei2,3, WANG Wei2,3, SHAN Yiyin2,3, YANG Ke2,**()
1. University of Chinese Academy of Sciences, Beijing 100049, China
2. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3. Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China;
引用本文:

石全强, 刘坚, 严伟, 王威, 单以银, 杨柯. SIMP钢和T91钢在800℃的高温氧化行为*[J]. 材料研究学报, 2016, 30(2): 81-86.
Quanqiang SHI, Jian LIU, Wei YAN, Wei WANG, Yiyin SHAN, Ke YANG. High Temperature Oxidation Behavior of SIMP Steel and T91 Steel at 800℃[J]. Chinese Journal of Materials Research, 2016, 30(2): 81-86.

全文: PDF(4373 KB)   HTML
摘要: 

研究了ADS嬗变系统候选结构材料新型低活化马氏体耐热钢SIMP钢和T91钢在800℃空气中的高温氧化行为.结果表明, SIMP钢和T91钢在空气中氧化500 h后在表面形成了不同结构的氧化膜: 在SIMP钢表面形成了连续致密的Cr2O3层, 在Cr2O3层分布一层颗粒状的铬锰尖晶石, 在基体和氧化膜之间出现硅的富集; 而在T91钢表面形成了外层为Fe2O3和内层为铁铬尖晶石的双层结构氧化膜.新型SIMP钢的高温氧化速率远比T91钢的低, 表现出优异的抗高温氧化性能.SIMP钢中较高的铬和硅元素含量, 是其抗高温氧化性能优于T91钢的主要原因.

关键词 金属材料ADS高温氧化SIMP钢T91钢氧化膜    
Abstract

Oxidation behavior of two ferrite/martensite(F/M) steels, namely a novel 9%-12% Cr modified F/M steel (SIMP steel) and a commercial T91 steel were comparatively studied in air at 800oC. The oxide scales formed on the two steels were characterized by XRD, SEM and EPMA. The results show that the oxide scale formed on SIMP steel is single-layer composed of Cr2O3 and Mn1.5Cr1.5O4 spinel particles, and Si was enriched at the interface between the chromia scale and matrix; while the oxide scale formed on T91 steel has a double layered structure with an outer hematite Fe2O3 layer and an inner Fe-Cr spinel layer. The SIMP steel has better high temperature oxidation resistance than T91 steel, which may be due to the higher content of Cr and Si beneficial to the formation of the compact oxide scale on the SIMP steel.

Key wordsmetallic materials    ADS    high temperature oxidation    SIMP steel    T91 steel    oxide scale
收稿日期: 2015-04-20     
ZTFLH:  TG172  
基金资助:* 中国科学院战略性先导科技专项子课题XDA03010301,XDA03010302资助项目
作者简介: 通讯作者:杨柯, 研究员
Steel C Si Cr Mn W Ta V Nb Ni Mo S/×10-6 P/×10-6
T91 0.1 0.26 8.5 0.46 0.20 0.04 0.17 0.92 20 30
SIMP 0.25 1.43 10.8 0.54 1.2 0.11 0.19 0.01 10 40
表1  实验用钢的化学成分
图1  T91钢和SIMP钢热处理后的组织
图2  SIMP钢和T91钢在800℃空气中氧化500 h的氧化增重曲线
图3  SIMP钢和T91钢800℃空气中氧化500 h的XRD谱
图4  T91钢和SIMP钢在800℃空气中氧化500 h后表面氧化物的形貌和EDS分析
图5  T91钢和SIMP钢在800℃空气中氧化500 h后氧化膜的截面形貌和EPMA元素分析
图6  T91钢和SIMP钢在800℃空气中氧化500 h后的氧化膜截面形貌
1 R. Klueh, A. Nelson, Ferritic/martensitic steels for next-generation reactors. J. Nucl. Mater., 371, 37(2007)
2 F. Masuyama, History of power plants and progress in heat resistant steels, ISIJ International, 41, 612(2001)
3 F. Barbier, G. Benamati, C. Fazio, A. Rusanov, Compatibility tests of steels in flowing liquid lead-bismuth, J. Nucl. Mater., 295, 149(2001)
4 C. Fazio, G. Benamati, C. Martini, G. Palombarini, Compatibility tests on steels in molten lead and lead-bismuth, J. Nucl. Mater., 296, 243(2001)
5 V. Knežević, J. Balun, G. Sauthoff, G. Inden, A. Schneider, Design of martensitic/ferritic heat-resistant steels for application at 650℃with supporting thermodynamic modelling, Materials Science and Engineering: A, 477, 334(2008)
6 Q. Shi, J. Liu, W. Wang, W. Yan, Y. Shan, K. Yang, High Temperature Oxidation Behavior of SIMP Steel, Oxidation of Metals., 83, 1(2015)
7 O. I. Eliseeva, V. P. Tsisar, Effect of temperature on the interaction of EP823 steel with lead melts saturated with oxygen, Materials Science, 43, 230(2007)
8 A. Huntz, V. Bague, G. Beauplé, C. Haut, C. Sévérac, P. Lecour, X. Longaygue, F. Ropital, Effect of silicon on the oxidation resistance of 9% Cr steels, Applied Surface Science, 207, 255(2003)
9 T. Ishitsuka, Y. Inoue, H. Ogawa, Effect of silicon on the steam oxidation resistance of a 9% Cr heat resistant steel, Oxidation of Metals, 61, 125(2004)
10 H. Evans, D. Hilton, R. Holm, S. Webster, Influence of silicon additions on the oxidation resistance of a stainless steel, Oxidation of Metals, 19, 1(1983)
11 L. Huang, X. Hu, C. Yang, W. Yan, F. Xiao, Y. Shan, K. Yang, Influence of thermal aging on microstructure and mechanical properties of CLAM steel, J. Nucl. Mater, 443, 479(2013)
12 Q. Shi, J. Liu, H. Luan, Z. Yang, W. Wang, W. Yan, Y. Shan, K. Yang, Oxidation behavior of ferritic/martensitic steels in stagnant liquid LBE saturated by oxygen at 600℃, J. Nucl. Mater., 457, 135(2015)
13 Kaur I, W Gust, Fundamentals of Grain and Interphase Boundary Diffusion (Stuttgart, Ziegler Press, 1988)
14 B. A. Pint, I. G. Wright, The oxidation behavior of Fe-Al alloys, Materials Science Forum, 461-464, 799(2004)
15 R. M. Deacon, J. DuPont, C. Kiely, A. Marder, P. Tortorelli, Evaluation of the corrosion resistance of Fe-Al-Cr alloys in simulated low NOx environments, Oxidation of Metals, 72, 87(2009)
16 E. Airiskallio, E. Nurmi, M. H. Heinonen, I. J. Vayrynen, K. Kokko, M. Ropo, M. P. J.Punkkinen, H. Pitkanen, M. Alatalo, J. Kollar, B. Johansson, L. Vitos, High temperature oxidation of Fe-Al and Fe-Cr-Al alloys: The role of Cr as a chemically active element. Corrosion Science, 52, 3394(2010)
17 S. Liu, D. Tang, H. Wu, L. Wang, Oxide scales characterization of micro-alloyed steel at high temperature, Journal of Materials Processing Technology, 213, 1068(2013)
18 A. Paúl, S. Elmrabet, L. Alves, M. Da Silva, J. Soares, J. Odriozola, Ion microprobe study of the scale formed during high temperature oxidation of high silicon EN-1.4301 stainless steel, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 181, 394(2001)
19 R. Pettersson, L. Liu, J. Sund, Cyclic oxidation performance of silicon-alloyed stainless steels in dry and moist air, Corrosion Engineering, Science and Technology, 40, 211(2005)
20 F. Riffard, H. Buscail, E. Caudron, R. Cueff, C. Issartel, S. Perrier, In-situ characterization of the oxide scale formed on yttrium-coated 304 stainless steel at 1000℃, Materials characterization, 49, 55(2002)
21 F. I. W. F. H. Stott, Comparison of the effects of small additions of silicon or aluminum on the oxidation of iron-chromium alloys, Oxidation of Metals, 31, 369(1989)
22 B. Li, B. Gleeson, Effects of silicon on the oxidation behavior of Ni-base chromia-forming alloys, Oxidation of Metals, 65, 101(2006)
23 V. B. Trindade, U. Krupp, B. Z. Hanjari, S. Yang, H.-J. Christ, Effect of alloy grain size on the high-temperature oxidation behavior of the austenitic steel TP 347, Materials Research, 8, 371(2005)
24 A. M. Huntz, V. Bague, G. Beauple, C. Haut, C. Severac, P. Lecour, X. Longaygue, F. Ropital, Effect of silicon on the oxidation resistance of 9% Cr steels, Applied Surface Science, 207, 255(2003)
25 R. K. Wild, High temperature oxidation of austenitic stainless steel in low oxygen pressure. Corrosion Science, 17, 87(1977)
26 M. K. Hossain, Effects of alloy microstructure on the high temperature oxidation of an Fe-10-percent Cr alloy, Corrosion Science, 19, 1031(1979)
27 G. R. Holcomb, D. E. Alman, The effect of manganese additions on the reactive evaporation of chromium in Ni-Cr alloys, Scripta Materialia, 54, 1821(2006)
28 K. Hauffe,Oxidation of Metals ( New York, Plenum Press, 1965)
29 L. Meishuan,High Temperature Corrosion of Metal ( Beijing, Metallurgical Industry Press, 2001) p.248.
29 (李美栓, 金属的高温腐蚀(北京, 冶金工业出版社, 2001) p.248)
30 N. Birks, G. H. Meier, F. S. Pettit, Introduction to the High Temperature Oxidation of Metals (Cambridge University Press, 2006)
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.