Please wait a minute...
材料研究学报  2015, Vol. 29 Issue (11): 801-806    DOI: 10.11901/1005.3093.2015.154
  本期目录 | 过刊浏览 |
羟基磷灰石接枝壳聚糖表面改性及其复合水凝胶的生物相容性*
杨慎宇1,唐三元2,谭文成3,曾戎1,杨辉2,黄馨霈3,夏吉生4,屠美1()
1. 暨南大学材料科学与工程系 广州 510632
2. 珠海市人民医院 珠海 519000
3. 澳门仁和医疗中心 澳门
4. 澳门仁伯爵综合医院 澳门
Surface Modification of Hydroxyapatite-Grafted-Chitosan and Biocompatibility Evaluation of CS/HA-G-CS Composite Hydrogel
Shenyu YANG1,Sanyuan TANG2,Manseng TAM3,Rong ZENG1,Hui YANG2,Hsiungpei HUANG3,Katsang HA4,Mei TU1,**()
1. Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, China
2. Zhuhai People’s Hospital, Guangzhou, Zhuhai 519000, China
3. Centro Medico Ian Wo, Macau, China
4. Centro Hospitalar Conde de São Januário, Macau, China
引用本文:

杨慎宇,唐三元,谭文成,曾戎,杨辉,黄馨霈,夏吉生,屠美. 羟基磷灰石接枝壳聚糖表面改性及其复合水凝胶的生物相容性*[J]. 材料研究学报, 2015, 29(11): 801-806.
Shenyu YANG, Sanyuan TANG, Manseng TAM, Rong ZENG, Hui YANG, Hsiungpei HUANG, Katsang HA, Mei TU. Surface Modification of Hydroxyapatite-Grafted-Chitosan and Biocompatibility Evaluation of CS/HA-G-CS Composite Hydrogel[J]. Chinese Journal of Materials Research, 2015, 29(11): 801-806.

全文: PDF(3258 KB)   HTML
摘要: 

用壳聚糖修饰HA表面制备HA-接枝-壳聚糖纳米羟基磷灰石(HA-g-CS), 然后将其与壳聚糖共混制成CS/HA-g-CS复合水凝胶。FTIR、TGA、XRD的测试结果表明, CS已经成功地接枝到HA的表面, 接枝率为15.8%; SEM结果表明, HA-g-CS在CS 基体的分散性相对于HA得到明显的改善, 且CS/HA-g-CS比CS/HA复合水凝胶的抗压强度提高了43%。CS/HA-g-CS生物相容性评价的结果表明, 材料的细胞毒性和植入安全性均达到了国家标准要求。这表明, CS/HA-g-CS复合水凝胶可作为一种优良的支架材料应用于组织工程领域。

关键词 有机高分子材料壳聚糖羟基磷灰石表面改性复合水凝胶生物相容性    
Abstract

For further improvement of the compatibility between chitosan(CS) and hydroxyapatite (HA), surface modification of HA was carried out with CS to prepare hydroxyapatite-grafted-chitosan (HA-g-CS) The results of FT-IR, TGA and XRD show that CS was successfully grafted onto HA surface, SEM observation showed that the dispersity of HA-g-CS in the CS matrix was significantly improved, and the CS/HA-g-CS hydrogel exhibited much more better compression performance than that of the CS/HA. The biocompatibility evaluation showed that the CS/HA-g-CS composite hydrogel showed no cytotoxicity and implantation safety in vitro according with the requirement of national standards, and was expected to be served as a potential scaffold material applied in tissue engineering.

Key wordsorganic polymer materials    chitosan    hydroxyapatite    surface modification    composite hydrogel    biocapatibility
收稿日期: 2015-03-25     
基金资助:* 澳门科学技术发展基金072/2013/A, 广东省产业技术研究与开发专项资金项目计划2013B021800115, 珠海市科工贸信局项目2013032218, 广东省高等学校科技创新重点项目CXZD1015和广州市科技计划项目201508020035资助。
图1  羟基磷灰石接枝壳聚糖的反应机理示意图
图2  HA和HA-g-CS粉末XRD谱图
图3  HA、HA-APTES、HA-APTES-GD和HA-g-CS的FT-IR光谱图
图4  HA和HA-g-CS的热重分析
图5  CS/HA和CS/HA-g-CS干凝胶SEM图
表1  凝胶的抗压强度
Time Group OD Value (Wavelength 492 nm) RGR / % Cell toxicity
24 h CS/HA-g-CS 0.442 110 0
Negtive control 0.3995 100 0
Postive control 0.140 35 III
表2  CS/HA-g-CS材料MTT法细胞毒性结果
图6  CS/HA-g-CS、阴性对照以及阳性对照细胞形态观察
图7  不同植入时间HE染色切片照片
1 Kim I Y,Seo S J, Moon H S, Yoo M K, Park I Y, Kim B C, Chitosan and its derivatives for tissue engineering applications, Biotechnol Adv, 26(1), 1(2008)
2 Chenite A,Chaput C, Wang D, Combes C, Buschmann MD, Hoemann CD, Leroux JC, Atkinson BL, Binette F, Selmani A, Novel injectable neutral solutions of chitosan form biodegradable gels in situ, Biomaterials, 21(21), 2155(2000)
3 Wan Yuqing,Wang Yong, Liu Zhimin, Qu Xue, Han Buxing, Bei Jianzhong, Wang Shengguo, Adhesion and proliferation of OCT-1 osteoblast-like cells on micro- and nano-scale topography structured poly(L-lactide), Biomaterials, 26(21), 4453(2005)
4 Kong Lijun,Gao Yuan, Lu Guangyuan, Gong Yandao, Zhao Nanming, Zhang Xiufang. A study on the bioactivity of chitosan/nano-hydroxyapatite composite scaffolds for bone tissue engineering, European Polymer Journal, 42(12), 3171(2006)
5 Sekaran Saravanan,Sricharan Nethala, Soumitri Pattnaik, Anjali Tripathi, Ambigapathi Moorthi, Nagarajan Selvamurugan, Preparation, characterization and antimicrobial activity of a bio-composite scaffold containing chitosan/nano-hydroxyapatite/nano-silver for bone tissue engineering, International Journal of Biological macromolecules, 49(2), 188(2011)
6 Jiang Liuyun,Li Yubao, Wang Xuejiang, Zhang Li, Wen Jiqiu, Gong Mei, Preparation and properties of nano-hydroxyapatite/chitosan/carboxymethyl cellulose composite scaffold, Carbohydrate Polymers, 74(3), 680(2008)
7 Benjamin T. Reves, Jessica A. Jennings, Joel D. Bumgardner, Warren O. Haggard,Osteoinductivity assessment of BMP-2 loaded composite chitosan-nano-hydroxyapatite scaffolds in a rat muscle pouch, Materials, 4(8), 1360(2011)
8 M. R. Nikpour, S. M. Rabiee, M. Jahanshahi,Synthesis and characterization of hydroxyapatite/chitosan nanocomposite materials for medical engineering applications, Composites: Part B, 43(4), 1881(2012)
9 LI Xiangnan,CHEN Xiaoming, PENG Zhiming, LI Shipu, Preparation and characterization of hollow hydroxyapatite submicrospheres chitosan injectable hydrogels, Journal of Function Materials, 2(42), 206(2011)
9 (李湘南, 陈晓明, 彭志明, 李世普, 空心纳米羟基磷灰石微球/壳聚糖可注射水凝胶的制备及表征, 功能材料, 2(42), 206(2011))
10 Li Zhanyong,Shi Linqi, Wang Changfeng, He Binglin, Liang Shuren. Studies on the preparation of crosslinked chitosan resin and its blood compatibility, Ion Exchange and Adsorption, 15(5), 425(1999)
11 Lu Yongquan, Deng Zhenhua, Practical IR Spectrum Analysis (Beijing, Electronic Indrustry Press, 1989)p.245.
[1] 叶姣凤, 王飞, 左洋, 张钧翔, 罗晓晓, 冯利邦. 兼具高强度、高韧性和自修复性能的环氧树脂改性热可逆聚氨酯[J]. 材料研究学报, 2023, 37(4): 257-263.
[2] 李瀚楼, 焦晓光, 朱欢欢, 赵晓欢, 矫庆泽, 冯彩虹, 赵芸. 支链含氟聚酯的合成和性能[J]. 材料研究学报, 2023, 37(4): 315-320.
[3] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[4] 马逸舟, 赵秋莹, 杨路, 裘进浩. 热塑型聚酰亚胺/聚偏氟乙烯全有机复合薄膜的制备及其介电储能[J]. 材料研究学报, 2023, 37(2): 89-94.
[5] 殷洁, 胡云涛, 刘慧, 杨逸霏, 王艺峰. 基于电沉积技术构建聚苯胺/海藻酸膜及电化学性能研究[J]. 材料研究学报, 2022, 36(4): 314-320.
[6] 申延龙, 李北罡. 磁性氨基酸功能化海藻酸铝凝胶聚合物的制备及对偶氮染料的超强吸附[J]. 材料研究学报, 2022, 36(3): 220-230.
[7] 崔丽, 孙丽丽, 郭鹏, 马鑫, 王舒远, 汪爱英. 沉积时间对聚醚醚酮表面类金刚石薄膜的结构和性能的影响[J]. 材料研究学报, 2022, 36(11): 801-810.
[8] 龙庆, 王传洋. 不同碳黑含量PMMA的热降解行为和动力学分析[J]. 材料研究学报, 2022, 36(11): 837-844.
[9] 李建中, 朱博轩, 王振宇, 赵静, 范连慧, 杨柯. 输尿管支架表面化学接枝镀铜涂层及其性能[J]. 材料研究学报, 2022, 36(10): 721-729.
[10] 蒋平, 吴丽华, 吕太勇, José Pérez-Rigueiro, 王安萍. 蜘蛛大壶状腺丝的反复拉伸力学行为和性能[J]. 材料研究学报, 2022, 36(10): 747-759.
[11] 鄢俊, 杨进, 王涛, 徐桂龙, 李朝晖. 有机硅油改性水性酚醛的制备及其性能[J]. 材料研究学报, 2021, 35(9): 651-656.
[12] 陈怿咨, 张承双, 陈平. 用常压空气等离子体对PBO纤维表面接枝改性[J]. 材料研究学报, 2021, 35(9): 641-650.
[13] 张昊, 李帆, 常娜, 王海涛, 程博闻, 王攀磊. 羧酸型接枝淀粉吸附树脂的制备和对染料的去除性能[J]. 材料研究学报, 2021, 35(6): 419-432.
[14] 孙丽颖, 钱建华, 赵永芳. AgNWs-TPU/PVDF柔性薄膜电容传感器的制备和性能[J]. 材料研究学报, 2021, 35(6): 441-448.
[15] 唐开元, 黄洋, 黄湘舟, 葛颖, 李娉婷, 袁凡舒, 张威威, 孙东平. 碳化细菌纤维素的理化性质及其在甲醇电催化中的应用[J]. 材料研究学报, 2021, 35(4): 259-270.