Please wait a minute...
材料研究学报  2015, Vol. 29 Issue (11): 807-813    DOI: 10.11901/1005.3093.2015.274
  本期目录 | 过刊浏览 |
表面改性和混杂对超高分子量聚乙烯纤维/环氧树脂复合材料性能的影响*
邱军(),王增义,孙茜,高雪媛
先进土木工程材料教育部重点实验室 同济大学材料科学与工程学院 上海 201804
Effect of Surface Modification and Hybridization of UHMWPE Fibers on Performance of their Composites with Epoxy Resin
Jun QIU(),Zengyi WANG,Qian SUN,Xueyuan GAO
Key Laboratory of Advanced Civil Engineering Materials (Tongji University), Ministry of Education, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
引用本文:

邱军,王增义,孙茜,高雪媛. 表面改性和混杂对超高分子量聚乙烯纤维/环氧树脂复合材料性能的影响*[J]. 材料研究学报, 2015, 29(11): 807-813.
Jun QIU, Zengyi WANG, Qian SUN, Xueyuan GAO. Effect of Surface Modification and Hybridization of UHMWPE Fibers on Performance of their Composites with Epoxy Resin[J]. Chinese Journal of Materials Research, 2015, 29(11): 807-813.

全文: PDF(2828 KB)   HTML
摘要: 

采用紫外接枝和与芳纶纤维混杂的方式改善UHMWPE 纤维的缺点, 详细研究了接枝单体种类、浓度和纤维混杂等对UHMWPE 纤维/环氧树脂复合材料性能的影响。结果表明, 以丙酮为溶剂采用一步接枝法在紫外光辐射下将丙烯酸接枝到UHMWPE 纤维表面上, 可显著提高UHMWPE纤维增强的复合材料的弯曲强度、冲击强度和拉伸强度; 随着接枝单体浓度的提高弯曲强度和冲击强度没有明显的变化, 而拉伸强度不断提高。同时, 将UHMWPE纤维与芳纶纤维混杂可提高其与树脂基体生成的复合材料的耐热性。UHMWPE纤维与芳纶纤维按1∶1的质量比混杂, 混杂纤维增强的复合材料在90℃的形变量比UHMWPE纤维增强的复合材料减少66.7%, 显著提高了复合材料的耐热性。

关键词 复合材料紫外接枝混杂UHMWPE纤维芳纶纤维    
Abstract

Ultra high molecular weight polyethylene (UHMWPE) fibers possess outstanding properties such as high tensile strength and low density. However, their low surface polarity and poor heat resistance restrict the application of UHMWPE fibers as a reinforcing material for high performance composites. These shortcomings of UHMWPE fibers can be overcome by ultraviolet (UV) assisted grafting treatment and hybridization with aramid fibers. Results show that UHMWPE fibers could firstly be modified by means of an UV radiation assisted one step grafting process with acetone as solvent and acrylic acid as monomers, then the mechanical properties of composites of epoxy resin with the modified UHMWPE fibers was greatly enhanced; with the increasing monomer content in the acetone solvent, the tensile strength of UHMWPE fibers/epoxy resin composites increased obviously, while there was no significant change of flexural strength and impact strength. In order to further improve the heat resistance of UHMWPE fibers/epoxy resin composites, UHMWPE fibers were hybridized with aramid fibers and then the hybrid fibers were used as reinforcing material to produce hybrid fibers/epoxy resin composites. As a result, the deformation of the hybrid fibers/epoxy resin composites decreased by 66.7% at 90℃ compared to that of UHMWPE fibers/epoxy resin composites. The result proves that the pre-hybridization of UHMWPE fibers is an effective means to enhance the heat resistance of UHMWPE fibers/epoxy resin composites .

Key wordscomposites    UV grafting    hybridization    UHMWPE fibers    aramid fibers
收稿日期: 2015-05-07     
基金资助:* 上海市科技攻关项目12521102204 资助项目。
Solvent Grafting monomer Appearance grafting efficiency/% Impact strength /MPa Flexural strength /MPa
None - - 61.93 136.37
C2H5OH AA 5.16 186.54 127.02
CH3COCH3 AA 6.41 103.54 179.56
C2H5OH AM 2.68 98.84 58.74
CH3COCH3 AM 4.32 99.19 135.77
表1  溶剂和接枝单体种类与复合材料力学性能的关系
图1  不同处理的UHMWPE纤维的红外光谱图
图2  AA接枝UHMWPE纤维的反应机理
图3  丙烯酸的浓度对UHMWPE纤维复丝增强的复合材料拉伸强度和断裂伸长率的影响
图4  不同浓度丙烯酸处理下的UHMWPE纤维复丝增强的复合材料的应力-应变图
图5  丙烯酸接枝处理前后UHMWPE纤维的形貌对比
图6  丙烯酸的浓度对复合材料弯曲强度和冲击强度的影响
图7  纤维处理前后的UHMWPE纤维/环氧树脂复合材料冲击断口的SEM形貌图
图8  芳纶/UHMWPE混杂纤维复合材料与UHMWPE纤维复合材料力学性能的对比
图9  不同纤维增强的复合材料的变形量对比
图10  不同纤维增强的复合材料冲击断口的SEM形貌图
1 GUO Changsheng,YANG Jianzhong, AN Hongyu, The research of ultra-high molecular weight polyethylene fiber's modification, Hi-Tech Fiber & Application, 39(6), 21(2014)
1 (郭昌盛, 杨建忠, 安红玉, 超高相对分子质量聚乙烯纤维改性方法, 高科技纤维与应用, 39(6), 21(2014))
2 LING Rihui,DU Ya, MU Yi, JIANG Zhirong, ZHAO Guoliang, Effect of ultra-violet irradiation on structure and properties of ultra-high molecular weight polyethylene fibers, Polymer Materials Science and Engineering, 30(8), 85(2014)
2 (梁日辉, 都 亚, 牧 艺, 江志荣, 赵国樑, 紫外光辐照对超高分子量聚乙烯纤维结构与性能的影响, 高分子材料科学与工程, 30(8), 85(2014))
3 WANG Fei,LIU Lichao, XUE Ping, Research progress in preparation technology of ultra-high molecular weight polyethylene fiber, Plastics, 43(5), 31(2014)
3 (王 非, 刘丽超, 薛平, 超高分子量聚乙烯纤维制备技术进展, 塑料, 43(5), 31(2014))
4 M. M. Xiao, J. R. Yu, J. J. Zhu, L. Chen,Effect of UHMWPE concentration on the extracting, drawing and crystallizing properties of gel fibers, Journal of Materials Science, 46(17), 5690(2011)
5 Z. Li, W. Zhang, X.W. Wang,Surface modification of ultra high molecular weight polyethylene fibers via the sequential photoinduced graft polymerization, Applied Surface Science, 257(17), 7600(2011)
6 CHEN Zili,YU Junrong, LIU Zhaofeng, TAN Guanhong, Effect of UV irradiation process on the structure and properties of UHMWPE fibers, Polymer Materials Science And Engineering, 17(3), 62(2001)
6 (陈自力, 于俊荣, 刘兆峰, 谈冠红, 紫外光辐照交联对超高相对分子质量聚乙烯纤维结构和性能的影响, 高分子材料科学与工程, 17(3), 62(2001))
7 LUO Yuxiang,WU Yue, HU Fuzeng, UV-photo initiated grafting treatment of UHMWPE fibers, Acta Materiae Compositae Sinica, 18(4), 29(2001)
7 (骆玉祥, 吴 越, 胡福增, 超高分子量聚乙烯纤维紫外接枝处理, 复合材料学报, 18(4), 29(2001))
8 LI Zhi,ZHANG Wei, WU Xiangyang, Surface modification of ultra high molecular weight polyethylene fibers via the UV-induced graft polymerization, New Chemical Materials, 39(11), 46(2011)
8 (李 志, 张 炜, 吴向阳, 超高分子量聚乙烯纤维表面紫外接枝聚合改性研究, 化工新型材料, 39(11), 46(2011))
9 ZHU Wuhuang,SU Ping, ZHOU Kechao, Development of ultra-high molecular weight polyethylene fibers and its composites, Materials Review, 19(3), 66(2005)
9 (朱武黄, 苏 萍, 周科朝, 超高分子量聚乙烯纤维及其复合材料的研究现状, 材料导报, 19(3), 66(2005))
10 Kiranh Kale,Shitals Palaskar, Plasma technology for wettability, dyeability and function finish of polyester and nylon fabrics, BTRA Scan, 43(1), 18(2013)
11 Choonki Na,Hyunju Park, Preparation of acrylic acid arafted polypropylene nonwoven fabric by photoinduced graft polymerization with preabsorption of monomer solution, Journal of Applied Polymer Science, 114(1), 387(2009)
12 LI Tongqi,WANG Chengyang, Effect factors and improving methods of the properties of aramid fiber and its Composite, Polymer Materials Science And Engineering, 19(5), 5(2003)
12 (李同起, 王成扬, 影响芳纶纤维及其复合材料性能的因素和改善方法, 高分子材料科学与工程, 19(5), 5(2003))
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.