Please wait a minute...
材料研究学报  2015, Vol. 29 Issue (12): 913-920    DOI: 10.11901/1005.3093.2015.12.913
  本期目录 | 过刊浏览 |
纳米多孔铜钛合金的制备及其超级电容器性能*
刘洁1,2,3,刘旭燕2,3,刘芳2,3,王飞1,2,3,潘登2,3()
1. 上海理工大学机械工程学院 上海 200093
2. 上海理工大学材料科学与工程学院 上海 200093
3. 上海理工大学 上海市金属基先进电力材料实验室 上海 200093
Fabrication of a Three-dimensional Nanoporous Cu-Ti Alloy with Excellent Electrochemical Capacitance Performance
Jie LIU1,2,3,Xuyan LIU2,3,Fang LIU2,3,Fei WANG1,2,3,Deng PAN2,3,**()
1. School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
2. School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
3. Metal Based Advanced Electric Power Materials Laboratory, University of Shanghai for Science and Technology, Shanghai 200093, China
引用本文:

刘洁,刘旭燕,刘芳,王飞,潘登. 纳米多孔铜钛合金的制备及其超级电容器性能*[J]. 材料研究学报, 2015, 29(12): 913-920.
Jie LIU, Xuyan LIU, Fang LIU, Fei WANG, Deng PAN. Fabrication of a Three-dimensional Nanoporous Cu-Ti Alloy with Excellent Electrochemical Capacitance Performance[J]. Chinese Journal of Materials Research, 2015, 29(12): 913-920.

全文: PDF(5910 KB)   HTML
摘要: 

采用磁控溅射法和脱合金法相结合的方法制备了纳米多孔铜钛合金。以原子比为40∶60的Cu-Ti合金靶材为原料用磁控溅射方法制备了厚度为720 nm的铜钛合金薄膜(Cu35Ti65), 并将此薄膜置于0.13 mol/L的氢氟酸溶液中用脱合金方法腐蚀得到了纳米多孔铜钛合金薄膜, 将制备好的铜钛合金薄膜作为三电极测试系统中的负极材料, 以对其电容性能进行测试。本文测试和计算了这种纳米多孔铜钛薄膜电极在1 mol/L Na2SO4电解液中的比电容。结果表明, 电极在这种中性溶液中的电化学性能良好, 比容量为8.96 mFcm-2, 比现有的纳米多孔铜电极有很大的提高。对NPCu/Ti电极的循环充放电性能的测试结果表明, 该电极具有优良的循环稳定性能, 比现有的纳米多孔铜电极有明显的改善。这种改善与电极材料的多孔结构有关。

关键词 金属材料纳米多孔铜钛磁控溅射脱合金电化学容量超级电容器    
Abstract

Thin film of nanoporous Cu-Ti alloy as a promising electrode material for electrochemical capacitors was prepared by a two-step process, i.e. a thin film of Cu35Ti65 was firstly deposited on silicon substrate by magnetron sputtering process with Cu40Ti60 alloy as target , and then the sputtered film of Cu35Ti65 alloy was dealloyed in 0.13 mol/L HF solution for 12 h to prepair the isolated thin film of nanoporous Cu-Ti alloy. Electrodes made of the nanoporous Cu-Ti alloy exhibited excellent electrochemical capacitance performance with a specific capacitance of 8.96 mFcm-2 in 1 mol/L Na2SO4 solution. Furthermore, the nanoporous Cu-Ti alloy electrode showed remarkable chemical stability by cyclically charging and discharging. The excellent electrochemical performance of the nanoporous Cu-Ti alloy can be ascribed to the high specific surface area of the nanoporous structure.

Key wordsmetal materials    nanoporous Cu-Ti    magnetron sputtering    dealloying    electrochemical capacitance    electrochemical capacitor
收稿日期: 2015-05-12     
基金资助:* 上海市教委创新项目14YZ082和上海市科委自然科学基金14ZR1428100资助项目
No. Samples Cu Ti
(a) Cu35Ti65 35.02 64.98
(b) NPCu/Ti-8 h 95.02 4.98
(c) NPCu/Ti-12 h 98.16 1.84
表1  不同薄膜样品的EDAX能谱元素成分分析
图1  不同薄膜样品的SEM图像
图2  不同薄膜样品的EDAX图谱
图3  不同薄膜样品的XRD物相分析
Samples 100 mV/s 250 mV/s 400 mV/s 500 mV/s 600 mV/s
NPCu/Ti-8 h 8.47 8.10 7.79 7.46 6.98
NPCu/Ti-12 h 8.96 8.65 8.31 8.06 7.85
表2  脱合金8 h和12 h的NPCu/Ti薄膜在不同扫描速率下测得的CV曲线计算的比电容值
Capacitor materials Specific capacitance
(C/mFcm-1)
Specific capacitance
(C/Fg-1)
Reference
Nanoporous TiO2 1.05 [21]
Nanoporous copper/Mangenese-dioxide 280 [34]
Composite NiO@rGO 881 [35]
Nanoporous nickel/nickel hydroxide 5.0 [36]
Porous carbon 350 [37]
Nanoporous copper 8.96 813 This work
表3  不同纳米多孔结构电极的比容量比较
图4  不同条件下制备的纳米多孔铜钛合金薄膜在1 mol/L Na2SO4溶液中的CV曲线
图5  不同条件下制备的纳米多孔铜钛合金薄膜在1 M Na2SO4溶液中的充放电曲线
Samples 50 μA/cm2 100 μA/cm2 200 μA/cm2 300 μA/cm2
NPCu/Ti-8 h 8.30 8.25 7.93 7.90
NPCu/Ti-12 h 8.91 8.26 8.12 8.03
表4  脱合金8 h和12 h的NPCu/Ti薄膜在不同电流密度下的充放电曲线计算的比电容值
图6  脱合金8 h和12 h的NPCu/Ti薄膜在1 mol/L Na2SO4溶液中的EIS图谱及其拟合电路图
Samples Rs / Ωcm2 Rc / Ωcm2 CPE / μFcm-2
NPCu/Ti-8 h 3.35 100.02 30.26
NPCu/Ti-12 h 3.02 86.36 22.31
表5  脱合金8 h和12 h的NPCu/Ti薄膜在1 mol/L Na2SO4溶液中的电化学阻抗谱拟合结果
1 S. C. Zhang, Y. Xing, T. Jiang, Z. J. Du, F. Li, L. He, W. B. Liu, A three-dimensional tin-coatednanoporous copper for lithium-ion battery anodes, Journal of Power Sourse, 196(12), 6195(2011)
2 M. Toupin, T. Brousse, D. Belanger, Storage mechanism of MnO2 electrode used in aqueouselectrochemicalcapacitor, Journalof Materials Chemistry, 16(1), 3148(2004)
3 T. Huang, C. S. Dong, Y. Gu, M. L. Zhong, L. Li, The mechanism of three-dimensional manganese-based nanoporous structure formation by laser deposition coupled with dealloying, Material Letters, 95(8), 30(2013)
4 T. Cottineau, M. Toupin, T. Delahaye, Nanostructured transition metal oxides for aqueous hybrid electrochemical supercapacitors, Applied Physics A: Materials Science Processing, 82(12), 599(2006)
5 HU Fei, ZHAO Chong, WEN Siyi, XIONG Wei, Investigation on the formation of nanoporous layers on TiNb alloys by ultrafast anodization, Journal of Functional Meterials, 8(3), 13(2015)
5 (胡飞, 赵翀, 文思逸, 熊伟, 超快阳极氧化TiNb合金制备复合纳米多孔氧化膜的研究, 功能材料, 8(3), 13(2015))
6 P. Poizot, S. Laruelle, S. Grugeon, Nano-sized transitionmetal oxides as negative-electrode materials for lithium-ion batteries, Nature, 407(12), 496(2001)
7 K. N. Nam, D. P. Kim, J. Yoo, Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes, Science, 312, 885(2006)
8 C. Ban, Z. Wu, D. T. Gillaspie, Nanostructured Fe3O4/SWNT electrode: binder-free and high-rate Li-ion anode, Advanced Materials, 22(5), 145(2010)
9 W. F. Wei, X. W. Cui, W. X. Chen, Manganese oxide-based materials as electrochemical supercapacitor electrodes, Chemical Society Reviews, 40, 1697(2010)
10 C. C. H, Y. T. Wu, K. H. Chang, Low-temperature hydrothermal ynthesis of Mn3O4 and MnOOH single crystals determinant influence of oxidants, Chemistry of Materials, 20(6), 2890(2008)
11 P. Meduri, C. Pendyala, V. Kumar, Hybrid tin oxide nanowires as stable and high capacity anodes for Li-ion batteries, Nano Letters, 9(3), 612(2009)
12 WANG Lei, ZHANG Zhao, LI Gang, LI Zhongkai, Electrochemical preparation and formation mechanism of nanoporous anodic membrane on Ti6Al4V surface, Journal of Functional Metaials, 6(15), 1053(2009)
12 (王磊, 张昭, 李纲, 李仲恺, Ti6Al4V表面纳米多孔氧化膜的电解制备及形成机理研究, 功能材料, 6(15), 1053(2009))
13 X. L. Kong, L. C. L.Huang, C. M. Hsu, High-affinity capture of proteins by diamond nanoparticles for mass spectrometric analysis, Analytical Chemistry, 77(1), 259(2005)
14 F. Adams, V. L. Van, R. Barrett, Advanced analytical techniques: platform for nano materials science, Spectrochimica Acta Part B: Atomic Spectroscopy, 60(18), 13(2005)
15 R. Seshadri, F. C. Meldrum, Bioskeletons as templates for ordered macroporous structures, Advanced Materials, 12(10), 1149(2000)
16 R. Zeis, T. Lei, K. Sieradzki, Catalytic reduction of oxygen and hydrogen peroxide by nanoporous gold, Journal of Catalysis, 253(10), 132(2008)
17 X. Lang, A. Hirata, C. Fujita, Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors, Nature Nanotechnology, 6(4), 232(2011)
18 ZHANG Xuhai, DONG Xiaozhen, YANG Chunlei, ZENG Yuqiao, JIANG Jianqing, Multicomponent nanoporous palladium with enhanced catalytic activity prepared by dealloying metallic glass, Journal of Functional Materials, 24(12), 3634(2013)
18 (张旭海, 董小真, 杨春雷, 曾宇乔, 蒋建清, 金属玻璃脱合金制备高催化性能的多元掺杂纳米多孔Pd, 功能材料, 24(12), 3634(2013))
19 L. G. Xue, Z. H. Fu, Y. Yao, T. Huang, A. S. Yu, Three-dimensional porous Sn-Cu alloy anode for lithium-ion batteries, Electrochimica Acta, 55(8), 7310(2010)
20 M. Zhang, Z. D. Cui, X. J. Yang, Q. Wei, D. L. Zhu, CdS sensitized nanoporous TiO2/CuO layer prepared by dealloying of Ti-Cu amorphous alloy, Journal of Alloy and Compounds, 80(11), 131(2012)
21 H. Zhou, Y. Zhong, Z. S. He, L. Y. Zhang, J. M. Wang, J. Q. Zhang, C. N. Cao, Three-dimensional nanoporous TiO2 network films with excellent electrochemical capacitance performance, Journal of Alloy and Compounds, 59(7), 1(2014)
22 J. Y. Brun, S. J.Hamar-Thibault, C. H. Allibert, Cu-Ti and Cu-Ti-Al solid state phase-equilibria in the Cu-rich region, Zeitschrift Fur Metallkunde, 74(8), 525(1983)
23 W. A. Soffa, D. E. Laughlin, High-strength age hardening copper-titanium alloys redivivus, Progress in Materials Science, 49, 347(2004)
24 WEI Huan, WEI Yinghui, HOU Lifeng, The phase transition and applications of age hardening copper-titanium alloys, Journal of Functional Materials, 10(12), 1001(2015)
24 (卫欢, 卫英慧, 侯利锋, 时效硬化铜钛合金的相变应用, 功能材料, 10(12), 1001(2015))
25 H. B. Lu, Y. Li, F. H. Wang, Synthesis of porous copper from nanocrystalline two-phase Cu-Zr film by dealloying, Scripta Materialia, 56, 165(2007)
26 H. B. Lu, Y. Li, F. H. Wang, Influence of composition on corrosion behavior of as-cast Cu-Zr alloys in HCl, Electrochimica Acta, 52, 474(2006)
27 H. J. Li, W. L. Wang, F. F. Pan, X. D. Xin, Q. Q. Chang, X. M. Liu, Synthesis of single-crystalline α-MnO2 nanotubes and structural characterization by HRTEM, Materials Science and Engineering, 176, 1054(2011)
28 B. E. Conway, Transition from “supercapaeitor” to “battery” behavior in electrochemical energy storage, Journal of the Electrochemistry Society, 138(6), 1539(1991)
29 FENG Xiaomiao, YAN Zhenzhen, CHEN Ningna, Synthesis of hollow urchin-like MnO2 via a facile hydrothermal method and its application in supercapacitors, Journal of Inorganic Chemistry, 11(5), 2509(2014)
29 (冯晓苗, 闫真真, 陈宁娜, 空心海胆状二氧化锰的制备及其在超级电容器中的应用, 无机化学学报, 11(5), 2509(2014))
30 H. Y. Lee, G. B. Goodenough, Supercapacitor behavior with KCl electrolyte, Journal of Solid State Chemistry, 144, 220(1999)
31 X. Zhang, X. Z. Sun, H. T. Zhang, D. C. Zhang, Y. W. Ma, Microwave-assisted reflux rapid synthesis of MnO2 nanostructures and their application in supercapacitors, Electrochimica Acta, 87(6), 637(2013)
32 J. Wang, D. F. Thomas, A. Chen, Nonenzymatic electrochemical glucose sensor based on nanoporous PtPb networks, Analytical Chemistry, 80(4), 997(2008)
33 S. J. Bao, C. M. Li, H. L. Li, H. T.Luongc John, Morphology and electrochemistry of LiMn2O4 optimized by using different Mn-sources, Journal of Power Sources, 164(5), 885(2007)
34 LIU Jiangyun, ZHOU Jun, LIU Li, QIN Chunling, ZHAQ Weimin, Preparation and specific capacitance performance of a new nanoporous copper/manganese dioxide composite electrode material, Journal of Hebei University of Technology, 44(4), 1(2015)
34 (刘江云, 周君, 刘丽, 秦春玲, 赵维民, 新型纳米多孔铜/二氧化锰复合电极材料的制备及其比电容特性, 河北工业大学学报, 44(4), 1(2015))
35 H. M. Zhang, D. Guo, J. Zhu, Q. H. Li, L. B. Chen, T. H. Wang, A layer-by-layer deposition strategy of fabricating NiO@rGO composites for advanced electrochemical capacitors, Electrochimica Acta, 152(12), 378(2015)
36 H. J. Qiu, L. Peng, X. Li, Y. Wang, Enhanced supercapacitor performance by fabricating hierarchical nanoporous nickel/nickel hydroxide structure, Materials Letters, 158(6), 366(2015)
37 L. L. Zhang, R. Zhou, X. S. Zhao, Graphene-based materials as supercapacitors electrodes, Journal of Materials Chemistry, 20(12), 83(2010)
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.