Please wait a minute...
材料研究学报  2016, Vol. 30 Issue (1): 1-5    DOI: 10.11901/1005.3093.2015.090
  研究论文 本期目录 | 过刊浏览 |
Cu2Se、In2Se3、Ga2Se3混合球磨过程中的Cu(In, Ga)Se2形成机制研究
李晓龙, 赵明, 庄大明(), 巩前明, 曹明杰, 欧阳良琦, 郭力, 孙汝军, 高泽栋
清华大学材料学院 北京 100084
Reaction Mechanism of Cu(In, Ga)Se2 Formation During Milling Process of Powder Mixture of Cu2Se, In2Se3 and Ga2Se3
LI Xiaolong, ZHAO Ming, ZHUANG Daming*(), GONG Qianming, CAO Mingjie, OUYANG Liangqi, GUO Li, SUN Rujun, GAO Zedong
School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
引用本文:

李晓龙, 赵明, 庄大明, 巩前明, 曹明杰, 欧阳良琦, 郭力, 孙汝军, 高泽栋. Cu2Se、In2Se3、Ga2Se3混合球磨过程中的Cu(In, Ga)Se2形成机制研究[J]. 材料研究学报, 2016, 30(1): 1-5.
Xiaolong LI, Ming ZHAO, Daming ZHUANG, Qianming GONG, Mingjie CAO, Liangqi OUYANG, Li GUO, Rujun SUN, Zedong GAO. Reaction Mechanism of Cu(In, Ga)Se2 Formation During Milling Process of Powder Mixture of Cu2Se, In2Se3 and Ga2Se3[J]. Chinese Journal of Materials Research, 2016, 30(1): 1-5.

全文: PDF(1116 KB)   HTML
摘要: 

对球磨时间不同的Cu2Se、In2Se3和Ga2Se3混合粉末进行热压烧结制备CIGS靶材, 发现在球磨时间较短时靶材出现分层, 随着球磨时间延长分层缺陷消失。由此考察了粉末在球磨过程中发生的物理化学变化及其对分层的影响。结果表明: Cu2Se、In2Se3和Ga2Se3三种硒化物粉末在球磨过程中发生机械合金化反应形成黄铜矿相Cu(In, Ga)Se2 (CIGS)。随着球磨时间的延长, 黄铜矿相结构CuInSe2 (CIS)首先在Cu-Se二元化合物表面产生, 并随着Ga原子的扩散逐步形成CIGS四元相。当球磨时间达到48 h时, 粉末由黄铜矿相CIGS和少量Ga2Se3组成。由于Cu2-xSe与CIGS晶体结构相近, 因此通过外延反应的方式有效促进了CIGS的合成。球磨过程中Cu-Se二元相的消失和CIGS相的形成有助于抑制烧结过程中分层缺陷的产生。

关键词 无机非金属材料铜铟镓硒机械合金化热压烧结靶材    
Abstract

Sputtering targets of CIGS quaternary ceramic were fabricated by hot-press sintering the milled powder mixture of Cu2Se, In2Se3 and Ga2Se3. When the milling time of the powders less than 4 h, the sintered targets delaminated, while the delamination disappeared with the prolonging milling time. Therefore the physico-chemical changes of the powder mixture during the milling process and their influence on the delamination of the targets were investigated. The results indicate that with the progress of the milling process, mechanical alloying (MA) occurred, and chalcopyrite Cu(In, Ga)Se2 (CIGS) formed from Cu2Se, In2Se3 and Ga2Se3; With the increasing milling time, CuInSe2 (CIS) formed on the surface of binary copper selenide firstly and CIGS was subsequently generated due to the inward diffusion of Ga; Thus the original blend powders became a mixture of CIGS and residual Ga2Se3 after milling for 48 h. Since CIGS and Cu2-xSe have a similar crystallographic structure, therefore this epitaxial relation may facilitate the formation of CIGS. The disappearance of Cu-Se binary compound and the formation of CIGS restrained the delamination of the CIGS targets in the sintering process.

Key wordsinorganic non-metallic materials    CIGS    mechanical alloying    hot-pressing sintering    sputtering targets
收稿日期: 2015-02-15     
作者简介: 庄大明, 教授
Time/h Average particle size/μm D10/μm D90/μm
2 1.999 0.835 3.356
4 1.018 0.562 1.553
8 0.843 0.419 1.352
12 0.674 0.346 1.072
16 0.622 0.316 1.013
20 0.581 0.306 0.927
24 0.560 0.300 0.822
48 0.504 0.286 0.722
表1  不同球磨时间粉末的粒径
Time /h Cu/% In/% Ga/% Se/% Cu/(In+Ga) Ga/(In+Ga)
0 23.71 18.56 7.22 50.52 0.920 0.280
4 23.31 18.34 7.13 51.22 0.915 0.280
24 23.37 18.37 7.03 51.23 0.920 0.277
48 23.39 18.32 6.99 51.30 0.924 0.276
表2  不同球磨时间粉末的成分
图1  不同球磨时间制备粉末的XRD谱
Cu2-xSe CIS CIGS
Structure Cubic Tetragonal Tetragonal
XRD PDF card No. 06-0680 40-1484 35-1102
a/nm 0.5739 0.5782 0.5736
b/nm 0.5739 0.5782 0.5736
c/nm 0.5739 1.1619 1.1448
α/(°) 90 90 90
β/(°) 90 90 90
γ/(°) 90 90 90
表3  Cu2-xSe、CIS、CIGS的晶格常数
图2  不同球磨时间混合粉末Raman谱
图3  Cu-Se二元相图[19]
1 P. Reinhard, A. Chirila, P. Blosch, F. Pianezzi, S. Nishiwaki, S. Buechelers, A. N. Tiwari, Review of progress toward 20% efficiency flexible CIGS solar cells and manufacturing issues of solar modules, J. IEEE Photovolt., 3(1), 572(2013)
2 P. Jackson, D. Hariskos, R. Wuerz, O. Kiowski, A. Bauer, T. M. Friedlmeier, M. Powalla,Properties of Cu(In, Ga)Se2 solar cells with new record efficiencies up to 21.7%, Phys. Status. Solidi. A-Rapid Res. Lett., 9(1), 1(2014)
3 LI Chunlei, ZHUANG Daming, ZHANG Gong, LUAN Hexin, LIU Jiang, SONG Jun, The influence of selenization temperature on the properties of CuInGaSe2 Thin Films, Chin. J. Mater. Res., 24(4), 358(2010)
3 (李春雷, 庄大明, 张弓, 栾和新, 刘江, 宋军, 硒化温度对铜钢稼硒太阳能电池吸收层性能的影响, 材料研究学报, 24(4), 358(2010))
4 F. F. Liu, Y. Sun, Q. He, Z. Q. Zhou, Rapid thermal annealing on CdS/Cu(In, Ga)Se2 based solar cells, in: 2013 International Conference on Materials for Renewable Energy and Environment (ICMREE), edited by IEEE (Chengdu, IEEE, 2013) p.143
5 J. A. Frantz, R. Y. Bekele, V. Q. Nguyen, J. S. Sanghera, A. Bruce, S. V. Frolov, M. Cyrus, I. D. Aggarwal, Cu(In, Ga)Se2 thin films and devices sputtered from a single target without additional selenization, Thin Solid Films, 519(22), 7763(2011)
6 C. P. Liu, C. L. Chuang, Fabrication of CIGS nanoparticle-ink using ball milling technology for applied in CIGS thin films solar cell, Powder Technol., 229, 78(2012)
7 J. H. Shi, Z. Q. Li, D. W. Zhang, Q. Q. Liu, Z. Sun, S. M. Huang,Fabrication of Cu(In, Ga)Se2 thin films by sputtering from a single quaternary chalcogenide target, Prog. in Photovolt.: Res. and Appl., 19(2), 160(2011)
8 K. Utsumi, O. Matsunaga, T. Takahata, Low resistivity ITO film prepared using the ultra high density ITO target, Thin Solid Films, 334(1), 30(1998)
9 N. Zhang, D. M. Zhuang, G. Zhang, An investigation on preparation of CIGS targets by sintering process, Mater. Sci. Eng. B, 166, 34(2010)
10 J. Liu, D. M. Zhuang, H. X. Luan, M. J. Cao, M. Xie, X. L. Li,Preparation of Cu(In, Ga)Se2 thin film by sputtering from Cu(In, Ga)Se2 quaternary target, Prog. Nat. Sci., 23(2), 133(2013)
11 P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, M. Powalla,New world record efficiency for Cu(In, Ga)Se2 thin-film solar cells beyond 20%, Prog. in Photovolt.: Res. and Appl., 19(7), 894(2011)
12 J. Zhu, Q. Li, L. Bai, Y. Sun, M. Zhou, Y. Xie,Metastable tetragonal Cu2Se hyperbranched structures: large-scale preparation and tunable electrical and optical response regulated by phase conversion, Chem. Eur. J., 18(41), 13213(2012)
13 M. Marudachalam, R. W. Birkmire, H. Hichri, J. M. Schultz, A. Swartzlander, M. M.Al-Jassim, Phases, morphology, and diffusion in CuInxGa1-xSe2 thin films, J. Appl. Phys., 82(6), 2896(1997)
14 C. D. Kim, M. S. Jin, W. T. Kim,Growth and characterization of ordered vacancy chalcopyrite CuIn3Se5 and Cu(In, Ga)3Se5 single crystals, J. Korean Phys. Soc., 30(3), 750(1998)
15 W. Witte, R. Kniese, M. Powalla, Raman investigations of Cu(In, Ga)Se2 thin films with various copper contents, Thin Solid Films, 517(2), 867(2008)
16 J. Weszka, Ph. Daniel, A. Burian, A. M. Burian, A. T. Nguyen, Raman scattering in In2Se3 and InSe2 amorphous films, J. Non.-Cryst. Solids., 265, 98(2000)
17 B. Minceva-Sukarova, M. Najdoski, I. Grozdanov, C. J. Chunnilall, Raman spectra of thin solid films of some metal sulfides, J. Mol. Struct., 410, 267(1997)
18 P. Dubček, B. Etlinger, K. Furić, M. Kranjčec, Raman spectra of (GaxIn1-x)2Se3, Phys. Status. Solidi.(a), 122(1), K87(1990)
19 D. J. Chakrabarti, D. E. Laughlin,The Cu-Se (copper-selenium) system, J. Phase Equilib., 2(3), 305(1981)
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.