Please wait a minute...
材料研究学报  2016, Vol. 30 Issue (1): 57-62    DOI: 10.11901/1005.3093.2015.082
  研究论文 本期目录 | 过刊浏览 |
石墨烯作为润滑油添加剂在青铜织构表面的摩擦磨损行为*
赵磊, 蔡振兵(), 张祖川, 张旭, 林映武, 彭金方, 朱旻昊
西南交通大学摩擦学研究所 成都 610031
Tribological Properties of Graphene as Effective Lubricant Additive in Oil on Textured Bronze Surface
ZHAO Lei, CAI Zhenbing**(), ZHANG Zuchuan, ZHANG Xu, LIN Yingwu, PENG Jinfang, ZHU Minhao
Tribology Research Institute, Southwest Jiaotong University, Chengdu 610031, China
引用本文:

赵磊, 蔡振兵, 张祖川, 张旭, 林映武, 彭金方, 朱旻昊. 石墨烯作为润滑油添加剂在青铜织构表面的摩擦磨损行为*[J]. 材料研究学报, 2016, 30(1): 57-62.
Lei ZHAO, Zhenbing CAI, Zuchuan ZHANG, Xu ZHANG, Yingwu LIN, Jinfang PENG, Minhao ZHU. Tribological Properties of Graphene as Effective Lubricant Additive in Oil on Textured Bronze Surface[J]. Chinese Journal of Materials Research, 2016, 30(1): 57-62.

全文: PDF(3390 KB)   HTML
摘要: 

采用球面接触往复移动方式, 使用UTM-2摩擦磨损试验机考察了石墨烯作为润滑油添加剂的摩擦磨损性能。用TEM、SEM、XRD、红外光谱、拉曼光谱等手段对石墨烯的形貌和结构进行表征, 用PAO4作为基础油和添加质量分数为0.01%石墨烯(GP)的润滑油进行对比, 研究了在不同温度和不同织构面积率下的摩擦学性能。结果表明: 在润滑油中添加石墨烯能显著改善摩擦磨损性能, 温度为60℃和100℃时的效果最明显。在60℃和100℃工况下, 在PAO4基础油中相对于原始表面各种织构都增大了摩擦系数和磨损率, 在25℃和150℃工况下表面织构对摩擦磨损的影响不大; 使用含有石墨烯的润滑油在不同温度下织构面积率为5%时摩擦系数较低, 织构面积率为20%时摩擦系数较高, 织构面积率为10%时磨损率较低。

关键词 无机非金属材料石墨烯添加剂织构摩擦磨损    
Abstract

The friction and wear properties of graphene (GP) as a lubricant additives were investigated by means of a UTM-2 tribometer via a ball on plate contact reciprocating sliding. The molecular structure and morphology of graphene nano sheets were characterized by TEM, SEM, XRD, IR and Raman spectroscopy. The friction and wear test was performed with lubricant of PAO4 oil without and with addition of 0.01% graphene (GP) respectively at different temperatures for the textured bronze with different ratio of textured area. The results show that GP can effectively reduce the friction and wear, especially at 60℃ and 100℃. For the simple PAO4 oil, the bronze with untextured surface exhibits the lowest friction coefficient and wear rate at 60℃ and 100℃; whilst, with the increasing ratio of the textured area, the friction coefficient and wear rate increase. For graphene-containing PAO4 lubricating oil, the friction coefficient is lower for the bronze with 5% textured area, while higher for those with 20%; the wear rate is lower for the bronze with 10% textured area.

Key wordsinorganic non-metallic materials    graphene    additive    texture    friction and wear
收稿日期: 2015-02-10     
基金资助:* 国家自然科学基金51375407, U1530136资助项目
作者简介: 蔡振兵
Parameter Sample No.
0# 1# 2# 3#
Long axis of the ellipse-a /μm 0 200 200 200
Short axis of the ellipse-b /μm 0 100 100 100
Vertical distance-Y /μm 0 300 300 300
Horizontal distance /μm 0 523.6 261.8 130.9
Depth /μm 0 20 20 20
Area ratio 0 5% 10% 20%
表1  表面织构参数
图1  石墨烯的分散性试验
图2  2#试样在不同温度下的摩擦系数
图3  2#试样不同温度条件下的平面试样磨痕轮廓
图4  2#试样在60℃磨损后的球和平面试样光镜形貌(?表示滑动方向)
图5  2#试样在60℃的磨痕SEM像和EDS能谱
图6  不同表面织构平均摩擦系数对比
Sample 25℃ 60℃ 100℃ 150℃
PAO +0.01%GP PAO +0.01%GP PAO +0.01%GP PAO +0.01%GP
0# 39.8 38.1 137.2 40.4 164.4 43.7 65.3 60.7
1# 59.6 31.5 385.3 35.4 387.6 37.2 64.6 61.3
2# 53.3 21.3 394.6 19.04 425.3 24.9 41.9 14.3
3# 46.3 52.1 525.2 55.0 355.9 62.5 56.4 57.5
表2  平面试样磨损率
1 Diana Berman, Ali Erdemir, Anirudha V.Sumant, Reduced wear and friction enabled by graphene layers on sliding steel surfaces in dry nitrogen, Carbon, 59, 167(2013)
2 Hee K. Chae, Diana Y.Siberio-Pérez, Jaheon Kim, Yong Bok Go, Mohamed Eddaoudi, Adam J, Matzger, Michael O'Keeffe, Omar M. Yaghi, A route to high surface area, porosity and inclusion of large molecules in crystals, Nature, 427(5), 523(2004)
3 Masukazu Hirata, Takuya Gotou, Shigeo Horiuchi, Masahiro Fujiwara, Michio Ohba, Thin-film particles of graphite oxide 1: High-yield synthesis and flexibility of the particles, Carbon, 42(14), 2929(2004)
4 Claire Berger, Zhimin Song, Tianbo Li, Xuebin Li, Asmerom Y, Ogbazghi, Rui Feng, Zhenting Dai, Alexei N, Marchenkov, Edward H, Conrad, Phillip N. First, and Walt A, de Heer, Ultrathin Epitaxial Graphite: 2D Electron Gas Properties and a Route toward Graphene-based Nanoelectronics, Journal of Physical Chemistry B, 108(52), 19912(2004)
5 Varrla Eswaraiah, Venkataraman Sankaranarayanan, Sundara Ramaprabhu, Graphene-based engine oil nanofluids for tribological applications, ACS Applied Materials & Interfaces, 3(11), 4221(2011)
6 J. Lin, L. Wang, G. Chen, Modification of graphene platelets and their tribological properties as a lubricant additive, Tribology Letters, 41(1), 209(2011)
7 ZHANG Wei, ZHU Hongwei, DI Zechao, WANG Kunlin, WU Dehai, Research on preparation and friction properties of graphene by liquid phase exfoliation, Nanotechnology, 8(1), 5(2011)
7 (张伟, 朱宏伟, 狄泽超, 王昆林, 吴德海, 液相法制备石墨烯及其摩擦学性能研究, 纳米科技, 8(1), 5(2011))
8 TANG Yong, ZHOU Ming, HAN Zhiwu, WAN Zhenping, Recent research on manufacturing technologies of functional surface structure, Journal of Mechanical Engineering, 46(23), 93(2010)
8 (汤勇, 周明, 韩志武, 万珍平, 表面功能结构制造研究进展, 机械工程学报, 46(23), 93(2010))
9 I. Etsion, E. Sher, Improving fuel efficiency with laser surface textured piston rings, Tribology International, 42(4), 542(2009)
10 H. L. Costa, I. M. Hutchings, Hydrodynamic lubrication of textured steel surfaces under reciprocating sliding conditions, Tribology International, 40(8), 1227(2007)
11 K. Andriy, A. Oyelayo, The effect of laser texturing of steel surfaces and speed-load parameters on the transition of lubrication regime from boundary to hydrodynamic, Tribology Transactions, 47(2), 299(2004)
12 ZHANG Wenqian, ZHU Hua, MA Chenbo, ZHOU Yuankai, TANG Wei, CFD analysis on hydrodynamic bearing capacity of surface groove texture, Lubrication Engineering, 36(9), 59(2011)
12 (张文谦, 朱华, 马晨波, 周元凯, 唐玮, 表面凹痕织构动压承载性能的CFD分析, 润滑与密封, 36(9), 59(2011))
13 Ulrika Pettersson, Staffan Jacobson, Influence of surface texture on boundary lubricated sliding contacts, Tribology International, 36(11), 857(2003)
14 I. Etsion, State of the art in laser surface texturing, Journal of Tribology, 127(1), 248(2005)
15 J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, D. Obergfell, S. Roth, C. Girit, A. Zettl, On the roughness of single-andbi-layer graphene membranes, Solid State Communication, 143(1-2), 101(2007)
16 Dan Li, Marc B Müller, Scott Gilje, Richard B Kaner, Gordon G Wallace, Processable aqueous dispersions of graphene nanosheets, Nature nanotechnology, 3(2), 101(2008)
17 Adolfo Senatore, Vincenzo D'Agostino, Vincenzo Petrone, Paolo Ciambelli, Maria Sarno, Graphene Oxide Nanosheets as Effective Friction Modifier for Oil Lubricant: Materials, Methods,Tribological Results, ISRN Tribology, 425809(2013)
19 H. J. Song, N. Li, Frictional behavior of oxide graphene nanosheets as water-base lubricant additive, Applied Physics A, 105(4), 827(2011)
20 Jiaxing Wei, Meirong Cai, Feng Zhou, Weimin Liu, Candle Soot as Particular Lubricant Additives, Tribology Letters, 53(3), 521(2014)
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[4] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[5] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[6] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[7] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[8] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[9] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[10] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[11] 刘东洋, 童广泽, 高文理, 王卫凯. 2060铝锂合金厚板的各向异性[J]. 材料研究学报, 2023, 37(3): 235-240.
[12] 王春锦, 陈文革, 亢宁宁, 杨涛. 石墨烯调控3D打印功能钛的组织和性能[J]. 材料研究学报, 2023, 37(10): 791-800.
[13] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[14] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[15] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.