Please wait a minute...
材料研究学报  2016, Vol. 30 Issue (2): 99-107    DOI: 10.11901/1005.3093.2015.035
  本期目录 | 过刊浏览 |
用氯化焙烧法脱除炼铜炉渣中的铜*
李磊(), 张仁杰, 胡建杭
昆明理工大学 复杂有色金属资源清洁利用省部共建国家重点实验室 冶金与能源工程学院 昆明 650093
Removal of Copper from Copper-smelting Slags through Chloridizing Roast
LI Lei**(), ZHANG Renjie, HU Jianhang
(State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China)
引用本文:

李磊, 张仁杰, 胡建杭. 用氯化焙烧法脱除炼铜炉渣中的铜*[J]. 材料研究学报, 2016, 30(2): 99-107.
Lei LI, Renjie ZHANG, Jianhang HU. Removal of Copper from Copper-smelting Slags through Chloridizing Roast[J]. Chinese Journal of Materials Research, 2016, 30(2): 99-107.

全文: PDF(1245 KB)   HTML
摘要: 

对炼铜炉渣进行氯化焙烧可脱除渣中的铜, 有利于在后续工艺回收渣中的铁.以热力学计算分析为基础, 研究了在炼铜炉渣氯化焙烧过程中铜和铁的行为特征.结果表明: 在一定范围内提高焙烧温度,延长焙烧时间及增加CaCl2,FeSO4的加入量, 都有利于提高渣脱铜效率; FeSO4的加入量大于0.15时分解产物中生成过量的SO2, 导致系统中FeO的含量激增.FeO较易被氯气氯化造成渣中铁损失严重, 且使铜脱除效果降低.在焙烧温度为1373 K,焙烧时间 为30 min,氧气流量为 0.40 Lmin-1,CaCl2 添加量为0.20(CaCl2 与炼铜炉渣质量比)和FeSO4加入量0.15(FeSO4 与炼铜炉渣质量比)的工艺条件下, 处理后炼铜炉渣的含铜率由1.06%降至0.11%, 表明用氯化焙烧法可有效脱除渣中的铜.

关键词 金属材料炼铜炉渣氯化焙烧除铜    
Abstract

The copper in copper-smelting slags can be removed effectively by means of chloridizing roast process, which is beneficial to recover iron from the copper-smelting slags. Thermodynamic analysis was carried out to characterize the performance of copper and iron during the chloridizing roast process. It follows that in a certain range of processing parameters, the copper removal rate can be enhanced with the increasing ing temperature and time for the process, and the increasing amount of CaCl2 addition and FeSO4. When the addition amount of FeSO4 was higher than 0.15 (mass ratio of FeSO4 to copper slags), SO2 was produced excessively and the (FeO) content in the reaction bed increased quickly. The generated FeO can be chlorinated easily, thereby caused an obvious increase of iron loss and decrease of the copper removal rates. The copper content in the slags decreased from 1.06% to 0.11% after a chloridizing roast treatment at 1373 K for 30 minutes, with an O2 flow velocity of 0.40 Lmin-1 and an addition amount of CaCl2 of 0.20 (mass ratios of CaCl2 to copper slags) and FeSO4 of 0.15(mass ratios of FeSO4 to copper slags).

Key wordsmetallic materials    copper slags    chloridizing roast    copper removal
收稿日期: 2015-01-19     
ZTFLH:  TF524  
基金资助:* 国家自然科学基金51204082资助项目
作者简介: 通讯作者:李磊
图1  重熔随炉空冷后炼铜炉渣的X射线衍射图谱
Components Fe CaO SiO2 Al2O3 MgO Cu S Pb Zn Others
Contents 38.55 2.77 34.08 3.90 1.14 1.06 0.52 2.07 1.84 14.07
表1  炼铜炉渣化学成分(质量分数, %)
图2  实验装置
图3  CaCl2离解反应△rGmΘ-T关系图
Serial number Reactions △rGmΘ-T
(1) CaCl2+1/2O2(g)=CaO+Cl2(g) △rGmΘ=137.16-0.02T
(2) CaCl2+SiO2+1/2O2(g)=CaSiO3+Cl2(g) △rGmΘ=46.79-0.02T
(3) CaCl2+SO2(g)+O2(g)=CaSO4+Cl2(g) △rGmΘ= -352.36-0.24T
(4) CaCl2+2SO3(g)=CaSO4+SO2(g)+Cl2(g) △rGmΘ= -157.93-0.06T
表2  CaCl2解离时发生的反应
Serial number Reactions T/K
(7) CuO+Cl2(g)=CuCl2+1/2O2(g) 473~1073
CuO+Cl2(g)=CuCl2(g)+1/2O2(g) 1073~1873
(8) FeO+Cl2(g)=FeCl2+1/2O2(g) 473~1273
1/3Fe2O3+Cl2(g)=2/3FeCl3(g)+1/2O2(g) 1273~1873
(9) 1/3Fe2O3+Cl2(g)=2/3FeCl3+1/2O2(g) 473 ~873
FeO+Cl2(g)=FeCl2(g)+1/2O2(g); 873~1873
(10) 2/9Fe3O4+Cl2(g)=2/3FeCl3+4/9O2(g) 473~873
2/9Fe3O4+Cl2(g)=2/3FeCl3(g)+4/9O2(g) 873~1873
(11) Cu2O+Cl2(g)=2CuCl+1/2O2(g) 473~1873
表3  焙烧过程中炼铜炉渣中铜,铁氧化物的氯气氯化反应
图4  炼铜炉渣中氧化物与氯气发生反应的△rGmΘ-T关系图
Serial number Reactions T/K
(12) 1/2Cu2S+Cl2(g)=CuCl2+1/4S2(g) 473~1073
1/2Cu2S+Cl2(g)=CuCl2(g)+1/4S2(g) 1073~1873
(13) CuS+Cl2(g)=CuCl2+1/2S2(g) 473~1073
CuS+Cl2(g)=CuCl2(g)+1/2S2(g) 1073~1873
(14) FeS+Cl2(g)=FeCl2+1/2S2(g) 473 ~1273
FeS+Cl2(g)=FeCl2(g)+1/2S2(g) 1273~1873
(15) 2/3FeS+Cl2(g)=2/3FeCl3+1/3S2(g) 473~873
2/3FeS+Cl2(g)=2/3FeCl3(g)+1/3S2(g) 873~1873
表4  焙烧过程中炼铜炉渣中主要硫化物的氯气氯化反应
Serial number Reactions T/K
(16) 2FeCl3=Fe2Cl6(g) 473~973
2FeCl3(g)=Fe2Cl6(g) 973~1873
(17) 2CuCl2=Cu2Cl4(g) 473~1073
2CuCl2(g)=Cu2Cl4(g) 1073~1873
表5  炼铜炉渣氯化焙烧中氯化产物的聚合反应
图5  炼铜炉渣中硫化物与氯发生反应的△rGmΘ-T关系图
图6  炼铜炉渣氯化焙烧中氯化物聚合的△rGmΘ-T关系图
图7  CaCl2添加量对处理后渣含铜的影响
图8  CaCl2添加量对处理后渣含铁的影响
图9  经氧化氯化处理后炼铜炉渣的X射线衍射图谱
图10  FeSO4加入量对焙烧产物含铜的影响
图11  FeSO4加入量对焙烧产物含铁的影响
Reactions T/K 1073 1173 1273 1373 1473
(18) ΔGQ/(KJmol-1) -13.89 -10.44 -7.07 -3.76 -0.55
Equilibrium constants/k18 673.21 88.24 16.33 3.94 1.22
(19) ΔGQ/(KJmol-1) -13.70 -9.30 -4.97 -0.76 3.36
Equilibrium constants/k19 615.68 53.93 7.22 1.31 0.34
表6  温度为1073-1473 K反应(18)和(19)的吉布斯自由能变化及平衡常数
图12  焙烧温度对对焙烧渣含铜的影响
图13  焙烧温度对焙烧渣含铁的影响
图14  焙烧时间对对焙烧渣含铜的影响
图15  焙烧时间对焙烧渣含铁的影响
T/K 1073 1173 1273 1373 1473
ΔGQ/KJ/mol -4.48 -4.99 -5.45 -5.88 -6.30
Equilibrium constants/k29 8.23 8.56 8.62 8.61 8.61
表7  1173-1473 K温度范围内反应(20)的吉布斯自由能及平衡常数
1 E. Rudnik, L. Burznska, W. Gumowska, Hydro metallurgical recovery of copper and cobalt from reduction-roasted copper converter slag, Minerals Engineering, 22(1), 88(2009)
2 ZHANG Yang, MAN Ruilin, NI Wangdong, WANG Hui, Selective leaching of base metals from copper smelter slag, Hydrometallurgy, 103(1-4), 25(2010)
3 F. Carranza, N. Iglesias, A. Mazuelos, Ferric leaching of copper slag floation tailings, Minerals Engineering, 22(1), 107(2009)
4 F. Carranza, R. Romero, A. Mazuelos, N. Iglesias, O. Forcat, Biorecovery of copper from converter slag: Slag characterization and exploratory ferric leaching tests, Hydrometallurgy, 97(1/2), 39(2009)
5 ZHANG Linnan, ZHANG Li, WANG Mingyu, SUI Zhitong, Oxidization mechanism in CaO-FeOX-SiO2 slag with high iron content, Trans.Nonferrous Met.Soc.China, 15(4), 938(2005)
6 ZHANG Linnan, Study on selective Precipitation Valuable Constituent in Copper Smelting Slags, PhD dissertation,Northeastern University(2005)
6 (张林楠, 炼铜炉渣中有价组分的选择性析出研究, 博士学位论文,东北大学(2005))
7 HAN Wei, QIN Qingwei, Recovery of copper and iron from copper slag, Mining and Metallurgy, 18(2), 9(2009)
7 (韩伟, 秦庆伟, 从炼铜炉渣中提取铜铁的研究, 矿冶, 18(2), 9(2009))
8 NI Wen, MA Mingsheng, WANG Yali, WANG Zhongjie, LIU Fengmei, Thermodynamic and kinetic in recovery of iron from nickel residue, Journal of University of Science and Technology Beijing, 31(2), 163(2009)
8 (倪文, 马明生, 王亚利, 王忠杰, 刘凤梅, 熔融还原法镍渣提铁的热力学与动力学, 北京科技大学学报, 31(2), 163(2009))
9 LI Lei, HU Jianhang, WANG Hua, Study on smelting reduction ironmaking of copper slag, The Chinese Journal of Process Engineering, 11(1), 65(2011)
9 (李磊, 胡建杭, 王华, 炼铜炉渣熔融还原炼铁研究, 过程工程学报, 11(1), 65(2011))
10 WANG Jianjun, GUO Shangxing, ZHOU Li, LI Qiang, Slag for decopperization and sulphur control in molten steel, Journal of iron and steel research, international, 16(2), 17(2009)
11 HU Xiaojun, JIANG Pingguo, YAN Zheng, ZHU Liquan, CHOU Kuochuih, H. Matsuura, Selective chlorination reaction of Cu2O and FeO mixture by CaCl2, ISIJ International, 53(3), 541(2013)
12 K. Maweja, T. Mukongo, I. Motombo, Cleaning of a copper matte smelting slag from a water-jacket furnace by direct reduction of heavy metals, Journal of Hazardous Materials, 164(2-3), 856(2009)
13 FU Chongshui, The Principle of Nonferrous Metallurgy, (Beijing: Metallurgy Industry Press, 2012) p. 105
13 (傅崇说,有色冶金原理, ( 北京: 冶金工业出版社, 2012) p. 105)
14 A. B. Eduardo, J. M. Francisco, Chlorination methods applied to recover refractory metals from tin slags, Minerals Engineering, 21(2), 150(2008)
15 LI Lei, HU Jianhang, WANG Hua, Study on smelting oxidation desulfurization of copper slags, Journal of Iron and Steel research, international, 19(12), 14(2012)
16 N. V. Manukyan, V. H. Martirosyan, Investigation of the chlorination mechanism of metal oxides by chlorine, Journal of Materials Processing Technology, 142(1), 145(2003)
17 N. Kanari, E. Allain, I. Gaballah, Reactions of wustite and hematite with different chlorinating agents, Thermochimica Acta, 335(1-2), 79(1999)
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.