Please wait a minute...
材料研究学报  2015, Vol. 29 Issue (11): 860-866    DOI: 10.11901/1005.3093.2014.748
  本期目录 | 过刊浏览 |
回火温度对5.5Ni低温钢组织和力学性能的影响*
李员妹1,2,孙新军2(),雍岐龙1,2,李昭东2,张可1,2,王小江1,2
1. 昆明理工大学材料科学与工程学院 昆明 650093
2. 钢铁研究总院工程用钢所 北京 100081
Effect of Tempering Temperature on Microstructure and Mechanical Properties of 5.5Ni Cryogenic Steel
Yuanmei LI1,2,Xinjun SUN2,**(),Qilong YONG1,sup2,Zhaodong LI2,Ke ZHANG1,2,Xiaojiang WANG1,2
1. School of Materials Science and Engineering, Kunming University of Science and Technology,Kunming 650093, China
2. Department of Structural Steels, Central Iron and Steel Research Institute, Beijing 100081, China
引用本文:

李员妹,孙新军,雍岐龙,李昭东,张可,王小江. 回火温度对5.5Ni低温钢组织和力学性能的影响*[J]. 材料研究学报, 2015, 29(11): 860-866.
Yuanmei LI, Xinjun SUN, Qilong YONG, Zhaodong LI, Ke ZHANG, Xiaojiang WANG. Effect of Tempering Temperature on Microstructure and Mechanical Properties of 5.5Ni Cryogenic Steel[J]. Chinese Journal of Materials Research, 2015, 29(11): 860-866.

全文: PDF(3247 KB)   HTML
摘要: 

用XRD, SEM及TEM等手段表征5.5Ni钢在不同回火温度下逆转变奥氏体的含量、形貌和尺寸等的变化, 研究了回火温度对5.5Ni钢力学性能的影响规律。结果表明: 在580-600℃回火后5.5Ni钢的抗拉强度和屈服强度变化不明显; 在620℃回火后抗拉强度小幅度提高, 屈服强度却大幅度降低, 延伸率持续升高; 在580-620℃回火, 随着回火温度的提高5.5Ni钢中的逆转变奥氏体体积分数虽逐渐增加, 冲击功却不断降低。稳定程度高且细小均匀弥散分布的片层状逆转变奥氏体, 是在580℃回火后冲击功高达148 J的主要原因。钢中有两类逆转变奥氏体, 一类是片层状的, 宽度为20 nm, 长度不一, 有利于提高钢的低温韧性; 另一类是块状的, 呈团簇状分布, 尺寸约为200 nm, 对钢的低温韧性有害。

关键词 金属材料5.5Ni钢回火温度微观组织力学性能    
Abstract

The volume fraction, morphology and size of reversed austenite in 5.5Ni steel tempered at different temperatures were characterized by X-ray diffraction, scanning electron microscope and transmission electron microscope, and the influence of tempering temperature on mechanical properties of 5.5Ni steel was investigated. The results show that there was no significant change in either the tensile strength or yield strength for the steel tempered in the range from 580℃ to 600℃. There was a slight increment in tensile strength but a great decrement in yield strength, besides, a maximum elongation was obtained for the steel tempered at 620℃. As the tempering temperature increased from 580℃ to 620℃, the volume fraction of reversed austenite in 5.5Ni steel increased gradually but impact energy decreased. Stable, homogeneous, dispersive and fine lamella-like reversed austenite is the main reason of the high impact energy of 148 J when the steel tempered at 580℃. Two types of reversed austenite including lamella ones and block ones were detected in this steel. The former had different length with a width of about 20 nm which could improve the low temperature toughness of the steel. The latter had a size of about 200 nm and tended to gathering together as clusters which were detrimental to the low temperature toughness of the steel.

Key wordsmetallic materials    5.5Ni steel    tempering temperature    microstructure    mechanical properties
收稿日期: 2014-12-15     
基金资助:* 国家自然科学基金51201036资助项目。
图1  实验钢的轧制和冷却工艺
图2  在不同温度回火后实验钢的组织形貌
图3  在不同温度回火后钢的XRD谱图和逆转变奥氏体的体积分数
图4  在不同温度回火后实验钢的TEM像
图5  在不同温度回火后5.5Ni钢的力学性能
图6  在不同温度回火后实验钢中各相体积分数的理论计算结果
1 YANG Yuehui,CAI Qingwu, WU Huibin, WANG Hua, Formation of reversed austenite and its effect on cryogenic toughness of 9Ni steel during two phase region heat treatment , Acta Metallurgica Sinica, 45(3), 270(2009)
1 (杨跃辉, 蔡庆伍, 武会宾, 王 华, 两相区热处理中逆转变奥氏体的形成规律及其对9Ni钢低温韧性的影响, 金属学报, 45(3), 270(2009))
2 JIANG Lu,SUN Xinjun, LI Zhaodong, YONG Qilong, Effects of tempering temperature on morphology of metastable austenite and mechanical properties of Mn-Ni steel, Iron & Steel, 49(12), 59(2014)
2 (江 陆, 孙新军, 李昭东, 雍岐龙, 回火温度对Mn-Ni钢亚稳奥氏体形貌及其力学性能的影响, 钢铁, 49(12), 59(2014))
3 B. Fultz, J.I. Kim, Y. H. Kim, H. J. Kim, G. O. Fior, J. W. Morris,The stability of precipitated austenite and the toughness of 9Ni steel, Metallurgical Transactions A, 16(12), 2237(1985)
4 B. Fultz, J.W. Morris,A M?ssbauer spectrometry study of the mechanical transformation of precipitated austenite in 6Ni steel, Metallurgical Transactions A, 16(2), 173(1985)
5 J. W. Morris, Jr., Z. Guo, C. R. Krenn, Y.-H. Kim,The limits of strength and toughness in steel, ISIJ International, 41(6), 599(2001)
6 J. Huang, W.J. Poole, M. Militzer,Austenite formation during intercritical annealing, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 35A(11), 3363(2004)
7 YANG Yuehui,CAI Qingwu, TANG Di, WU Huibin, Precipitation and stability of reversed austenite in 9Ni steel, International Journal of Minerals, Metallurgy and Materials, 17(5), 587(2010)
8 S. J. Wu, G. J. Sun, Q. S. Ma, Q. Y. Shen, L. Xu,Influence of QLT treatment on microstructure and mechanical properties of a high nickel steel, Journal of Materials Processing Technology, 213(1), 120(2013)
9 ZHANG Kun,WU Huibin, TANG Di, ZHANG Weihua, Stability of reversed austenite in 9Ni steel, Journal of University of Science and Technology Beijing, 34(6), 651(2012)
9 (张 坤, 武会宾, 唐 荻, 张卫华, 9Ni钢中逆转变奥氏体的稳定性, 北京科技大学学报, 34(6), 651(2012))
10 ZHAO Hui,SHI Jie, LI Nan, WANG Cunyu, HU Jin, HUI Weijun, CAO Wenquan, Effects of Si on the microstructure and mechanical property of medium Mn steel treated by quenching and partitioning process, Chinese Journal of Materials Research, 25(1), 45(2011)
10 (赵 晖, 时 捷, 李 楠, 王存宇, 胡 劲, 惠卫军, 曹文全, Si对中锰钢淬火配分组织和性能的影响, 材料研究学报, 25(1), 45(2011))
11 Emmanuel De Moor, David K. Matlock, John G. Speer, Matthew J. Merwin,Austenite stabilization through manganese enrichment, Scripta Materialia, 64(2), 185(2011)
12 YONG Qilong, Secondary Phases in Steels (Beijing, Metallurgical?Industry?Press, 2006) p.33
12 (雍岐龙, 钢铁材料中的第二相(北京, 冶金工业出版社, 2006)p.33)
13 LI Lin,GAO Yi, ZHU Naqiong, HE Yanlin, LIU Rendong , HE Zhongping, SHI Wen, ZHANG Mei, Technology for high performance TRIP steel, Science China Technological Sciences, 55(7), 1823(2012)
14 YANG Yuehui,ZHANG Xiaojuan, YUAN Shaoqiang, Effect of reversed austenite on low temperature fracture mechanism of 9Ni steel, Transactions of Materials and Heat Treatment, 35(9), 101(2014)
14 (杨跃辉, 张晓娟, 苑少强, 回转奥氏体对9Ni钢低温断裂机制的影响, 材料热处理学报, 35(9), 101(2014))
15 Y. K. Lee, H. C. Shin, Y. C. Jang, S. H. Kim, C. S. Choi,Effect of isothermal transformation temperature on amount of retained austenite and its thermal stability in a bainitic Fe-3%Si-0.45%C-X steel, Scripta Materialia, 47(12), 805(2002)
16 H. S. Yang, H. K. D. H. Bhadeshia,Austenite grain size and the martensite-start temperature, Scripta Materialia, 60(7), 493(2009)
17 S. Lee, S. J. Lee, B. C. De Cooman,Austenite stability of ultrafine-grained transformation-induced plasticity steel with Mn partitioning, Scripta Materialia, 65(3), 225(2011)
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[12] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[13] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[14] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[15] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.