Please wait a minute...
材料研究学报  2015, Vol. 29 Issue (11): 835-842    DOI: 10.11901/1005.3093.2014.592
  本期目录 | 过刊浏览 |
三维有序氧化钛中空球薄膜的制备及其光电性能*
陈爱莲1,唐昭芳2,陈杨2,3(),陈志刚3
1. 常州大学机械工程学院 常州 213164
2. 常州大学材料科学与工程学院 常州 213164
3. 苏州科技学院江苏省环境功能材料重点实验室 苏州 215009
Synthesis and Photovoltaic Performance of Three-dimensional Ordered TiO2 Hollow Sphere Films
Ailian CHEN1,Zhaofang TANG2,Yang CHEN2,**(),Zhigang CHEN3
1. School of Mechanical Engineering, Changzhou University, Changzhou 213164, China
2. School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China
3. Jiangsu Key Laboratory for Environment Functional Materials, Suzhou University of Science and Technology, Suzhou 215009, China
引用本文:

陈爱莲,唐昭芳,陈杨,陈志刚. 三维有序氧化钛中空球薄膜的制备及其光电性能*[J]. 材料研究学报, 2015, 29(11): 835-842.
Ailian CHEN, Zhaofang TANG, Yang CHEN, Zhigang CHEN. Synthesis and Photovoltaic Performance of Three-dimensional Ordered TiO2 Hollow Sphere Films[J]. Chinese Journal of Materials Research, 2015, 29(11): 835-842.

全文: PDF(6083 KB)   HTML
摘要: 

为了提高染料敏化太阳能电池(DSSC)的光电转化效率, 以聚苯乙烯微球(290-300 nm)自组装形成的胶体晶体为牺牲模板制备了三维有序氧化钛中空球(3DOHS-TiO2)薄膜材料, 考察了以P25-TiO2/3DOHS-TiO2双层膜为光阳极的电池的光电转化特性。扫描电镜结果表明: 3DOHS-TiO2样品中的TiO2中空球呈紧密六方排列, 其球心距为260-270 nm, 壁厚为40-50 nm, 相邻的TiO2中空球彼此之间通过孔洞相互连接; 透射电镜结果表明: TiO2中空球体由尺寸约为10 nm的锐钛矿相氧化钛颗粒组成, 其壳壁上有由颗粒间堆积形成的介孔。光电性能测试结果表明: P25-TiO2/3DOHS-TiO2/DSSC的光电转化效率可达6.98%, 明显优于常规的P25-TiO2/DSSC(4.32%), 其原因是双层膜光阳极中的3DOHS-TiO2薄膜对太阳光散射和捕捉能力的增强。

关键词 无机非金属材料氧化钛三维有序结构胶体晶体模板染料敏化太阳能电池    
Abstract

To improve the properties of dye-sensitized solar cells (DSSC), three-dimensional ordered TiO2 hollow spheres (3DOHS-TiO2) films were synthesized using polystyrene spheres (290-300 nm) colloidal crystals as sacrificial templates. The photoelectric conversion performances of the DSSC based on double-layered films P25-TiO2/3DOHS-TiO2 were investigated. SEM results show that the orderly arranged TiO2 hollow spheres form hexangular and square arrays, and the hollow spheres connect to their neighbors through pores. The center-center spacing of the 3DOHS-TiO2 is 260-270 nm, and the thickness of the hollow shells is 40-50 nm. TEM results show that the shell is composed of a lot of tiny particles resulting in a mesoporous framework. The mean size of the anatase TiO2 nanoparticles of the shells is ca.10 nm as estimated from the HRTEM image. By compared with the P25-TiO2 nanocrystalline DSSC (η=4.32%), the DSSC based on the double-layered films P25-TiO2/3DOHS-TiO2 exhibit a higher photoelectric performance (η=6.98%). The enhancement of the cell performance can be attributed to the enhancement of light harvesting of the light scattering ability of the layer 3DOHS-TiO2.

Key wordsinorganic non-metallic materials    TiO2    three-dimensional ordered structure    colloidal crystal template    dye-sensitized solar cell
收稿日期: 2014-10-16     
基金资助:*国家自然科学基金项目51205032,江苏省自然科学基金项目BK2012158,苏州市应用基础研究计划项目SYG201316和江苏省环境功能材料重点实验室开放课题SJHG1302资助项目。
图1  3DOHS-TiO2薄膜材料的制备工艺示意图
图2  胶体晶体模板表层和截面的SEM像
图3  胶体晶体模板和模板/氧化钛前驱体复合物的TGA曲线
图4  3DOHS-TiO2样品的XRD谱
图5  3DOHS-TiO2样品表层和截面的FESEM像
图6  四方排列胶体晶体模板和3DOHS-TiO2样品的FESEM像
图7  3DOHS-TiO2样品的TEM像和选区电子衍射花样
图8  3DOHS-TiO2样品的N2吸附-脱附等温线及孔径分布曲线
图9  电池的光电流密度-电压特征曲线
Voc / V Jsc / (mA/cm2) FF/% η/%
P25-TiO2/DSSC 0.77 9.48 59 4.32
P25-TiO2/3DOHS-TiO2/DSSC 0.78 14.31 63 6.98
表1  电池的光电转化性能参数
1 B. O'Regan, M. Gr?tzel,A low-cost, high efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature, 353(6346), 737(1991)
2 A. Yella, H. Lee, H.N. Tsao, C. Yi, A.K. Chandiran, M. Nazeeruddin, E.W. Diau, C. Yeh, S.M. Zakeeruddin, M. Gr?tzel,Porphyrin-sensitized solar cells with Cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency, Science, 334, 629(2011)
3 A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson,Dye-Sensitized Solar Cells, Chem. Rev., 110(11), 6595(2010)
4 A. B. F. Martinson, J. W. Elam, J. T. Hupp, M. J. Pellin,ZnO nanotube based dye-sensitized solar cells, Nano Lett., 7(8), 2183(2007)
5 B. Tan, E. Toman, Y. Li, Y.Y. Wu,Zinc stannate (Zn2SnO4) dye-sensitized solar cells, J. Am. Chem. Soc., 129(14), 4162(2007)
6 H. Zheng, Y. Tachibana, K. Kalantar-zadeh. Dye-sensitized solar cells based on WO3, Langmuir, 26(24), 19148(2010)
7 S. Mori, S.Fukuda, S. Sumikura, Y. Takeda, Y. Tamaki, E. Suzuki, T. Abe,Charge-transfer processes in Dye-sensitized NiO solar cells, J. Phys. Chem. C, 12(41), 16134(2008)
8 P. Tiwana, P. Docampo, M.B. Johnston, H.J. Snaith, L.M. Herz,Electron mobility and injection dynamics in mesoporous ZnO, SnO2, and TiO2 films used in dye-sensitized solar cells, ACS Nano, 5(6), 5158(2011)
9 K. Fan, W. Zhang, T. Peng, J. Chen, F. Yang,Application of TiO2 fusiform nanorods for dye-sensitized solar cells with significantly improved efficiency, J. Phys. Chem. C, 115(34), 17213(2011)
10 B. Liu, E. S. Aydil,Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for Dye-sensitized solar cells, J. Am. Chem. Soc., 131(11), 3985(2009)
11 M. Ye, X. Xin, C. Lin, Z. Lin,High efficiency Dye-sensitized solar cells based on hierarchically structured nanotubes, Nano Lett., 11(8), 3214(2011)
12 Q. Zheng, H. Kang, J. Yun, J. Lee, J.H. Park, S. Baik,Hierarchical construction of self-standing anodized titania nanotube arrays and nanoparticles for efficient and cost-effective front-illuminated dye-sensitized solar cells, ACS Nano, 5(6), 5088(2011)
13 LUO Huaming,LIU Zhiyong, BAI Chuanyi, LU Yuming, CAI Chuanbing, TiO2 nanotube based dye-sensitized photoanode, Journal of Inorganic Materials, 28(5), 521(2013)
13 (罗华明, 刘志勇, 白传易, 鲁玉明, 蔡传兵, 基于二氧化钛纳米管的染料敏化电池光阳极研究, 无机材料学报, 28(5), 521(2013))
14 Y. Chen, Z. Tang, Z. Chen,Fabrication of three-dimensionally ordered macroporous TiO2 films with enhanced photovoltaic conversion efficiency, J. Inorg. Organomet. Polym., 23, 839(2013)
15 J. Shin, J.H. Moon,Bilayer inverse opal TiO2 electrodes for dye-sensitized solar cells via post-treatment, Langmuir, 27(10), 6311(2011)
16 Y. J. Kim, Y. H. Lee, M. H. Lee, H. J. Kim, J. H. Pan, G. I. Lim, Y. S. Choi, K. Kim, N. Park, C. Lee, W. I. Lee,Formation of efficient dye-sensitized solar cells by introducing an interfacial layer of long-range ordered mesoporous TiO2 thin film, Langmuir, 24(22), 13225(2008)
17 F. Sauvage, D. Chen, P. Comte, F. Huang, L. Heiniger, Y. Cheng, R.A. Caruso, M. Graetzel,Dye-sensitized solar cells employing a single film of mesoporous TiO2 beads achieve power conversion efficiencies over 10%, ACS Nano, 4(8), 4420(2010)
18 X. Zhang, F. Liu, Q. Huang, G. Zhou, Z. Wang,Dye-sensitized W-doped TiO2 solar cells with a tunable conduction band and suppressed charge recombination, J. Phys. Chem. C, 115(25), 12665(2011)
19 W. Guo, Y. Shen, L. Wu, Y. Gao, T. Ma,Effect of N dopant amount on the performance of Dye-sensitized solar cells based on N-doped TiO2 electrodes, J. Phys. Chem. C, 115(43), 21494(2011)
20 Y. Zhang, J. Zhang, P. Wang, G. Yang, Y. Zhu,Anatase TiO2 hollow spheres embedded TiO2 nanocrystalline photoanode for dye-sensitized solar cells, Mater. Chem. Phys., 123, 595(2010)
21 J. Yu, Q. Li, Z. Shu,Dye-sensitized solar cells based on double-layered TiO2 composite films and enhanced photovoltaic performance, Electrochim. Acta, 56, 6293(2011)
22 J. Yu, J. Fan, B. Cheng,Dye-sensitized solar cells based on anatase TiO2 hollow spheres/carbon nanotube composite films, J. Power Sources, 196, 7891(2011)
23 J. Zhang, Z. Sun, B. Yang. Self-assembly of photonic crystals from polymer colloids, Curr. Opin. Colloid Interface Sci., 14, 103(2009)
24 D. Kang, Y. Lee, C. Cho, J. H. Moon,Inverse opal carbons for counter electrode of dye-sensitized solar cells, Langmuir, 28, 7033(2012)
25 CHEN Yang,TANG Zhaofang, ZHU Yajuan, YAO Chao, Synthesis, characterization and low-temperature reducibility of inverse opal three-dimensional ordered macroporous CeO2, Chinese Journal of Materials Research, 26(5), 527(2012)
25 (陈 杨, 唐昭芳, 祝雅娟, 姚 超, 反蛋白石结构三维有序大孔CeO2的制备、表征及其低温还原性能, 材料研究学报, 26(5), 527(2012)
26 YU Bing,CONG Hailin, XUE Lei, LIU Xuesong, CHEN Zhaojing, Fabrication and application progress of colloidal crystals, Chinese Science Bulletin, 59(9), 752(2014)
26 (于 冰, 丛海林, 薛 蕾, 刘学松, 陈昭晶, 胶体晶体制备与应用研究进展, 科学通报, 59(9), 752(2014))
27 ZHEN Yifan,LI Guohua, TIAN Wei, MA Chunan, In situ XRD study on the phase transformation of nanoanatase, Chinese Journal of Inorganic Chemistry, 23(6), 1121(2007)
27 (郑遗凡, 李国华, 田 伟, 马淳安, 纳米锐钛矿相变的原位XRD研究, 无机化学学报, 23(6), 1121(2007))
28 J. Wang, F. Li, H. Zhou, P. Sun, D. Ding, T. Chen,Silica hollow spheres with ordered and radially oriented amino-functionalized mesochannels, Chem. Mater., 21, 612(2009)
29 M. T. Wu, T. J. Chow,TiO2 particles prepared by size control self-assembly and their usage on dye-sensitized solar cell, Microporous Mesoporous Mater., 196, 354(2014)
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.