Please wait a minute...
材料研究学报  2015, Vol. 29 Issue (10): 721-728    DOI: 10.11901/1005.3093.2014.570
  本期目录 | 过刊浏览 |
聚丙烯酰胺凝胶合成尖晶石纳米铝酸锌的络合机理及发光性能
孙光壮1,2,王仕发1,孙光爱1(),向霞2,祖小涛2
1. 中国工程物理研究院核物理与化学研究所 绵阳 621900
2. 电子科技大学物理电子学院 成都 610054
Synthesis of Spinel Nano-ZnAl2O4 by Polyacrylamide Gel Method and Its Chelating Mechanism and Photoluminescence Performance
Guangzhuang SUN1,2,Shifa WANG1,Guangai SUN1,**(),Xia XIANG2,Xiaotao ZU2
1. Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China
2. School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054, China
引用本文:

孙光壮,王仕发,孙光爱,向霞,祖小涛. 聚丙烯酰胺凝胶合成尖晶石纳米铝酸锌的络合机理及发光性能[J]. 材料研究学报, 2015, 29(10): 721-728.
Guangzhuang SUN, Shifa WANG, Guangai SUN, Xia XIANG, Xiaotao ZU. Synthesis of Spinel Nano-ZnAl2O4 by Polyacrylamide Gel Method and Its Chelating Mechanism and Photoluminescence Performance[J]. Chinese Journal of Materials Research, 2015, 29(10): 721-728.

全文: PDF(2553 KB)   HTML
摘要: 

用改进的聚丙烯酰胺凝胶法制备颗粒近似呈球形且粒度均匀的ZnAl2O4纳米颗粒, 并制备了3种锌铝摩尔比的ZnAlO样品。XRD结果表明, 当锌铝摩尔比为1∶1.8和1∶2时, 在900℃煅烧干凝胶制备的样品均为纯相的ZnAl2O4粉体。SEM结果表明, 锌铝摩尔比为1∶2制备的样品其颗粒尺寸随着煅烧温度的提高而增大, 且在900℃出现严重的团聚。荧光光谱分析结果表明, 激发波长为352 nm时出现一个469 nm的蓝光发射峰。基于实验结果, 研究了其络合机理和发光机理。

关键词 无机非金属材料聚丙烯酰胺凝胶法ZnAl2O4蓝光发射络合机理    
Abstract

Spherical ZnAl2O4 nanoparticles with uniform size distribution were synthesized by a modified polyacrylamide gel method, and three xerogel ZnAlO samples with different ratios of Zn to Al were prepared. X-ray diffraction analysis results show that the ZnAl2O4 powders can be obtained after calcination at 900℃ for the two xerogel samples with mole ratios of Zn2+:Al3+=1:1.8 and 1:2, respectively. Scanning electron microscope images reveal that the particle size of the sample with mole ratio of 1:2 increases with the increasing calcination temperature; when calcination at 900℃, significant agglomeration of particles can be observed. The photoluminescence emission spectrum for ZnAl2O4 nanoparticles detected at λex= 352 nm shows a blue emission peak located at 469 nm. Finally, the chelating mechanism and luminescence mechanism of ZnAl2O4 nanoparticles have been discussed based on the experimental results.

Key wordsinorganic non-metallic materials    polyacrylamide gel method    ZnAl2O4    blue-light emission    chelating mechanism
收稿日期: 2014-10-08     
基金资助:* 国家自然科学基金11105128资助项目。
图1  S-0–Zn∶Al=1∶1 和 S-01- Zn∶Al=1∶1.8制备的干凝胶在900℃煅烧样品的XRD谱和Zn∶Al=1∶2干凝胶在不同温度煅烧ZnAl2O4样品的XRD谱
Sample Unit cell volume /10-3 nm3 Crystallite size /nm d of ZnAl2O4 diffraction peaks / 10-1 nm Cell parameters
(220) (311) (422) (511) (440) a / 10-1 nm δa
S-01 531.3229 21.3593 2.8628 2.4423 1.6538 1.5578 1.4324 8.0994 0.0031
S2 531.8545 20.6242 2.8627 2.4422 1.6546 1.5591 1.4330 8.1021 0.0036
S3 530.0054 20.0332 2.8649 2.4403 1.6521 1.5550 1.4307 8.0927 0.0074
S4 528.2587 21.2995 2.8573 2.4365 1.6497 1.5564 1.4296 8.0838 0.0028
S5 528.5921 23.1723 2.8545 2.4364 1.6513 1.5564 1.4312 8.0855 0.0077
表1  样品S-01-S5的晶胞体积、晶粒尺寸、晶面间距以及晶胞参数
图2  不同锌铝离子比柠檬酸络合锌、铝离子的3种可能的络合机理
图3  ZnAl2O4干凝胶的TG/DTA曲线
图4  不同煅烧温度ZnAl2O4纳米颗粒的SEM像
图5  不同煅烧温度ZnAl2O4颗粒的尺寸分布图
图6  不同煅烧温度ZnAl2O4样品的红外光谱图
图7  不同煅烧温度样品的激发谱和发射谱, 插图为ZnAl2O4干凝胶在600℃煅烧样品分别在313 nm 和352 nm两个波长激发下的发射谱
图8  ZnAl2O4纳米颗粒的发光机制
1 E. L. Foletto, S. Battiston, J. M. Sim?es, M. M. Bassaco, L. S. F. Pereira,é. M. de Moraes Flores, E. I. Müller, Synthesis of ZnAl2O4 nanoparticles by different routes and the effect of its pore size on the photocatalytic process, Microporous and Mesoporous Materials, 163, 29(2012)
2 R. Ianos, S. Borcanescu, R. Lazau,Large surface area ZnAl2O4 powders prepared by a modi?ed combustion technique, Chemical Engineering Journal, 240, 260(2014)
3 F. Davar, M. S. Niasari,Synthesis and characterization of spinel-type zinc aluminate nanoparticles by a modi?ed sol-gel method using new precursor, Journal of Alloys and Compounds, 509(5), 2487(2011)
4 WANG Shifa, YANG Hua, XIAN Tao, JIANG Jinlong, WEI Zhiqiang, FENG Youcai, LI Ruishan, FENG Wangjun, Preparation an characterization of YMnO3 nanoparticles, Journal of China Ceramics Society, 38(12), 2303(2010)
4 (王仕发, 杨 华, 县 涛, 姜金龙, 魏智强, 冯有才, 李瑞山, 冯旺军, YMnO3 纳米颗粒的制备与表征, 硅酸盐学报, 38(12), 2303(2010))
5 M. Ranjbar, M. S. Niasari, S. M. H. Mashkani,Microwave synthesis and characterization of spinel-type zinc aluminate nanoparticles, Journal of Inorganic Organometallic Polymers and Materials, 22(5), 1093(2012)
6 S. Kurajica, E. Tkalcec, J. Sipusic, G. Matijasic, I. Brnardic, I. Simcic,Synthesis and characterization of nanocrystalline zinc aluminate spinel by sol–gel technique using modi?ed alkoxide precursor, Journal of Sol-Gel Science and Technology, 46(2), 152(2008)
7 V. Ciupina, I. Carazeanu, G. Prodan,Characterization of ZnAl2O4 nanocrystals prepared by coprecipitation and microemulsion techiniques, Journal of Optoelectronics and Advanced Materials, 6(4), 1317(2004)
8 S. Farhadi, S. Panahandehjoo,Spinel-type zinc aluminate (ZnAl2O4) nanoparticles prepared by the co-precipitation method: A novel, green and recyclable heterogeneous catalyst for the acetylation of amines, alcohols and phenols under solvent-free conditions, Applied Catalysis A: General, 382(2), 293(2010)
9 Z. Z. Chen, E. W. Shi, Y. Q. Zheng, W. J. Li, N. C. Wu, W. Z. Zhong,Synthesis of mono-dispersed ZnAl2O4 powders under hydrothermal conditions, Materials Letters, 56(4), 601(2002)
10 X. Y. Chen, C. Ma, Z. J. Zhang, B. N. Wang,Ultra?ne gahnite (ZnAl2O4) nanocrystals: Hydrothermal synthesis and photoluminescent properties, Materials Science and Engineering B, 151(3), 224(2008)
11 C. Ragupathi, J. J. Vijaya, A. Manikandan, L. J. Kennedy,Phytosynthesis of nanoscale ZnAl2O4 by using Sesamum (Sesamum indicum L.) optical and catalytic properties, Journal of Nanoscience and Nanotechnology, 13(12), 8298(2013)
12 A. A. Da Silva, A. de Souza Goncalves, M. R. Davolos,Characterization of nanosized ZnAl2O4 spinel synthesized by the sol-gel method, Journal of Sol-Gel Science and Technology, 49(1), 101(2009)
13 WANG Yun,WANG Hong, SUN Guangai, CHEN Xiping, WANG Shifa, Prepared and photoluminescence of SnO2 nanoparticles, Chinese Journal of Materials Research, 28(6), 420(2014)
13 (王 云, 王 虹, 孙光爱, 陈喜平, 王仕发, SnO2纳米颗粒的制备及其发光性能, 材料研究学报, 28(6), 420(2014))
14 S. F. Wang, H. Yang, T. Xian, X. Q. Liu,Size-controlled synthesis and photocatalytic properties of YMnO3 nanoparticles, Catalysis Communications, 12(7), 625(2011)
15 S. F. Wang, C. F. Zhang, G. A. Sun, B. Chen, W. Liu, X. Xiang, H. Wang, L. M. Fang, Q. Tian, Q. P. Ding, X. T. Zu,Effect of carbon and sintering temperature on the structural and magnetic properties of SrFe12O19 nanoparticles, Journal of Sol-Gel Science and Technology, 73(2), 371(2015)
16 S. F. Wang, H. B. Lv, X. S. Zhou, Y. Q. Fu, X. T. Zu,Magnetic nanocomposites through polyacrylamide gel route, Nanoscience and Nanotechnology Letters, 6(9), 758(2014)
17 WEI Zhiqiang,XIA Tiandong, WANG Jun, WU Zhiguo, YAN Pengxun, Lattice expansion of Ni nanopowders, Acta Physica Sinica, 56(2), 1004(2007)
17 (魏智强, 夏天东, 王 君, 吴志国, 闫鹏勋, 纳米镍粉体的晶格膨胀, 物理学报, 56(2), 1004(2007))
18 WANG Weipeng, YANG Hua, XIAN Tao, WEI Zhiqiang, LI Ruishan, FENG Wangjun, Polyacrylamide gel synthesis, characterization and magnetic properties of CoFe2O4 nanopowders, Chinese Journal of Inorganic Chemistry, 27(6), 1071(2011)
18 (王伟鹏, 杨 华, 县 涛, 魏智强, 李瑞山, 冯旺军, CoFe2O4纳米粉体的聚丙烯酰胺凝胶法合成、表征及磁特性, 无机化学学报, 27(6), 1071(2011))
19 YANG Hua,LIN Guanjun, XIAN Tao, WEI Zhiqiang, FENG Wangjun, Influence of chelating agents and crosslinking on TbMnO3 nanoparticles prepared by a gel route, Nanotechnology and Precision Engineering, 10(1), 46(2012)
19 (杨 华, 林贯军, 县 涛, 魏智强, 冯旺军, 络合剂和交联剂对凝胶法制备 TbMnO3 纳米颗粒的影响, 纳米技术与精密工程, 10(1), 46(2012))
20 XIAN Tao,YANG Hua, DAI Jianfeng, WEI Zhiqiang, MA Jinyuan, FENG Wangjun, Preparation and photocatalytic performance of nano-bismuth ferrite with tunable size, Chinese Journal of Catalysis, 32(4), 618(2011)
20 (县 涛, 杨 华, 戴剑锋, 魏智强, 马金元, 冯旺军, 粒径可控的纳米铁酸铋的制备及其光催化性能, 催化学报, 32(4), 618(2011))
21 WANG Zhiyong,PENG Chaoqun, WANG Richu, WANG Xiaofeng, LIU Bing, Influence of calcining process on optical properties of Al-doped-ZnO powders, Journal of Inorganic Materials, 28(2), 171(2013)
21 (王志勇, 彭超群, 王日初, 王小锋, 刘 兵, 煅烧工艺对氧化锌铝(AZO)粉体光学性能的影响, 无机材料学报, 28(2), 171(2013))
22 T. Xian, H. Yang, X. Shen, J. L. Jiang, Z. Q. Wei, W. J. Feng,Preparation of high-quality BiFeO3 nanopowders via a polyacrylamide gel route, Journal of Alloys and Compounds, 480(2), 889(2009)
23 X. Y. Song, S. H. Zheng, J. Zhang, W. Li, Q. Chen, B. Q. Cao,Synthesis of monodispersed ZnAl2O4 nanoparticles and their tribology properties as lubricant additives, Materials Research Bulletin, 47(12), 4305(2012)
24 R. Ianos, R. Lazau, I. Lazau, C. Pacurariu,Chemical oxidation of residual carbon from ZnAl2O4 powders prepared by combustion synthesis, Journal of the European Ceramic Society, 32(8), 1605(2012)
25 R. Khenata, M. Sahnoun, H. Baltache, M. Rerat, Ali H. Reshak, Y. Al-Douri, B. Bouhafs,Full- potential calculations of structural, elastic and electronic properties of MgAl2O4 and ZnAl2O4 compounds, Physics Letters A, 344(2-4), 271(2005)
26 S. F. Wang, C. F. Zhang, G. A. Sun, Y. G. Yuan, L. Chen, X. Xiang, Q. P. Ding, B. Chen, Z. J. Li, X. T. Zu,Self - assembling synthesis of α-Al2O3 - carbon composites and a method to increase their photoluminescence, Journal of Luminescence, 153, 393(2014)
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.