Please wait a minute...
材料研究学报  2015, Vol. 29 Issue (7): 529-534    DOI: 10.11901/1005.3093.2014.434
  本期目录 | 过刊浏览 |
氧化锌纳米柱阵列的水热合成及其性能
汤洋(),赵颖,张增光,陈颉
北京低碳清洁能源研究所 北京 102211
Hydrothermal Synthesis and Properties of ZnO Nanorod Arrays
Yang TANG(),Ying ZHAO,Zengguang ZHANG,Jie CHEN
National Institute of Clean-and-Low-Carbon Energy, Beijing 102211, China
引用本文:

汤洋,赵颖,张增光,陈颉. 氧化锌纳米柱阵列的水热合成及其性能[J]. 材料研究学报, 2015, 29(7): 529-534.
Yang TANG, Ying ZHAO, Zengguang ZHANG, Jie CHEN. Hydrothermal Synthesis and Properties of ZnO Nanorod Arrays[J]. Chinese Journal of Materials Research, 2015, 29(7): 529-534.

全文: PDF(2957 KB)   HTML
摘要: 

用水热法在溶解有Zn(CH3COO)2与C6H12N4的溶液中添加NH4NO3与Al(NO3)3制备了ZnO纳米柱阵列。结果表明, 添加在溶液中的NH4NO3降低了制备出的ZnO纳米柱的缺陷态密度, 减小了其内部的非辐射复合中心的密度。ZnO纳米柱内部的非辐射复合的减弱导致其斯托克斯位移降低49%, 从而得到高质量的ZnO纳米柱阵列。控制NH4NO3与Al(NO3)3在溶液中的添加可在3.36-3.57 eV范围内调控ZnO纳米柱的光学带隙宽度。Al的引入使ZnO纳米柱内部载流子的浓度提高, 在布尔斯坦-莫斯效应作用下纳米柱的光学带隙蓝移至3.56-3.57 eV。

关键词 无机非金属材料光学带隙水热法纳米柱    
Abstract

ZnO nanorods arrays were synthesized by hydrothermal method from an aqueous solution of Zn(CH3COO)2 and C6H12N4 with additives of NH4NO3 and Al(NO3)3. The results show that the use of NH4NO3 in the solution leads to a decrease in nonradiative recombination centers in the ZnO nanorods by lowering their defect density. The reduction of the nonradiative recombination in ZnO nanorods results in a descent in the Stokes shift of the nanorods by 49%. In addition, the optical band gap of the ZnO nanorods could be adjusted in a range of 3.36-3.57 eV by controlling the additives concentration in the solution. The increase of the carrier concentration as a result of the Al doping leads to a blue shift of the optical band gap of the ZnO nanorods to 3.56-3.57 eV, which can be ascribed to the Burstein-Moss effect.

Key wordsinorganic non-metallic materials    optical band gap    hydrothermal method    nanorods
收稿日期: 2014-08-21     
基金资助:* 国家自然科学基金61404007资助项目。
Sample NH4NO3/mmol/L Al(NO3)3/mmol/L Band gap energy/eV Stokes shift/meV
1 - - 3.38 114
2 20 - 3.38 113
3 40 - 3.36 90
4 60 - 3.36 91
5 80 - 3.35 85
6 - 5 3.57 269
7 - 10 3.56 269
8 40 5 3.36 94
9 40 10 3.37 102
表1  样品1-9的溶液配方及所制备的ZnO纳米柱的光学带隙宽度和Stokes位移
图1  样品1-9的透射光谱
图2  ZnO纳米柱阵列样品1、3、7、9的SEM像
图3  样品1-9的((-lnT)*hn)2-hn图谱
图4  样品1-9的室温光致发光图谱
1 SHEN Dezhen,MEI Zengxia, LIANG Hhuili, DU Xiaolong, YE Jiandong, GU Shulin, WU Yuxi, XU Chunxiang, ZHU Gangyi, DAI Jun, CHEN Mingming, JI Xu, TANG Zikang, SHAN Chongxin, ZHANG Baolin, DU Guotong, ZHANG Zhenzhong, ZnO-based materials, heterojunction and photoelectronic devices, Chin. J. Lumin., 35(1), 1(2014)
1 (申德振, 梅增霞, 梁会力, 杜小龙, 叶建东, 顾书林, 吴玉喜, 徐春祥, 朱刚毅, 戴 俊, 陈明明, 季 旭, 汤子康, 单崇新, 张宝林, 杜国同, 张振中, 氧化锌基材料、异质结构及光电器件, 发光学报, 35(1), 1(2014))
2 LI Honglin,ZHANG Zhong, LU Yingbo, HUANG Jinzhao, LIU Ruxi, First-principles and experimental study on the electronic and optical properties of Eu doped ZnO structure, Acta Metallurgica Sinica, 49(4), 506(2013)
2 (李泓霖, 张 仲, 吕英波, 黄金昭, 刘如喜, Eu掺杂ZnO结构光电性质的第一性原理及实验研究, 金属学报, 49(4), 506(2013))
3 LI Xuefei,ZHANG Ruifeng, Preparation and photocatalytic degradation properties of a Fe(III)-taPc/ZnO NWs/SiO2 ternary composite photo-catalyst, Chinese Journal of Materials Research, 27(5), 526(2013)
3 (李雪飞, 张瑞丰, Fe(III)-taPc/ZnO NWs/SiO2三元复合光催化剂的制备和性能, 材料研究学报, 27(5), 526(2013))
4 ZHAI Yingjiao,LI Jinhua, CHEN Xinying, SONG Xinghui, REN Hang, FANG Xuan, FANG Fang, CHU Xueying, WEI Zhipeng, WANG Xiaohua, Synthesis and characterization of Cd-doped ZnO nanoflowers and its photocatalytic activity, Chinese Optics, 7(1), 124(2014)
4 (翟英娇, 李金华, 陈新影, 宋星惠, 任 航, 方 铉, 方 芳, 楚学影, 魏志鹏, 王晓华, 镉掺杂氧化锌纳米花的制备及其光催化活性, 中国光学, 7(1), 124(2014))
5 ZHANG Kai, HUANG Jianye, WANG Fenghui, Wetting behavior of superhydrophobic materials under hydraulic pressure, Chinese Journal of Materials Research, 28(4), 281(2014)
5 (张 凯, 黄建业, 王峰会, 超疏水材料在液压作用下的润湿行为, 材料研究学报, 28(4), 281(2014))
6 WANG Xiaohong,XIE Wenjing, HAO Chen, ZHANG Pengfei, FU Xiaoqi, SI Naichao, Liquid phase synthesis of flower cluster-like ZnO via lignosite template and its photocatalytic property, Acta Metallurgica Sinica, 49(9), 1098(2013)
6 (王晓红, 谢文静, 郝 臣, 张鹏飞, 傅小奇, 司乃潮, 木素磺酸钙模板法液相合成花簇状ZnO及其光催化性能, 金属学报, 49(9), 1098(2013))
7 H. Li, S. Jiao, S. Bai, H. Li, S. Gao, J.Wang, Q. Yu, F. Guo, L. Zhao,Precursor-controlled synthesis of different ZnO nanostructures by the hydrothermal method, Phys. Status Solidi (a), 211, 595(2013)
8 H. Li, S. Jiao, H. Li,Growth and characterization of ZnO nanoflakes by hydrothermal method: effect of hexamine concentration , J. Mater. Sci.-Mater. Electron, 25, 2569(2014)
9 S. Jiao, K. Zhang, S. Bai, H. Li, S. Gao, H. Li, J. Wang, Q. Yu, F. Guo, L. Zhao,Controlled morphology evolution of ZnO nanostructures in the electrochemical deposition: From the point of view of chloride ions, Electrochim. Acta, 111, 64(2013)
10 S. Sun, S. Jiao, K. Zhang, D. Wang, S. Gao, H. Li, J. Wang, Q. Yu, F. Guo,Nucleation effect and growth mechanism of ZnO nanostructures by electrodeposition from aquous zinc nitrate baths, J. Cryst. Growth, 359, 15(2012)
11 TANG Yang,CHEN Jie, Optical band gap blue shift and stokes shift in Al-doped ZnO nanorods by electrodeposition, Chin. J. Lumin., 35(10), 1165(2014)
11 (汤 洋, 陈 颉, 电沉积掺铝氧化锌纳米柱的光学带隙蓝移与斯托克斯位移, 发光学报, 35(10), 1165(2014))
12 P. Sagar, P. K. Shishodia, R. M. Mehra, H. Okada, A. Wakahara, A. Yoshida,Photoluminescence and absorption in sol-gel-derived ZnO films, J. Lumin., 126, 800(2007)
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.