Please wait a minute...
材料研究学报  2014, Vol. 28 Issue (12): 955-960    DOI: 10.11901/1005.3093.2014.361
  本期目录 | 过刊浏览 |
羰基铁粉的铁含量和粒径对磁流变液剪切屈服强度的影响
姚军1(),张进秋1,彭志召1,张光磊2
1. 装甲兵工程学院装备试用与培训大队 北京 100072
2. 装甲兵工程学院政治部 北京 100072
Influence of Fe Content and Particle Size of Carbonyl Iron Powder on Shear Yield Stress of Magnetorheological Fluids
Jun YAO1,*(),Jinqiu ZHANG1,Zhizhao PENG1,Guanglei ZHANG2
1. Brigade of Armament Trial and Training, Academy of Armored Force Engineering, Beijing 100072
2. Political Headquarters, Academy of Armored Force Engineering, Beijing 100072
引用本文:

姚军,张进秋,彭志召,张光磊. 羰基铁粉的铁含量和粒径对磁流变液剪切屈服强度的影响[J]. 材料研究学报, 2014, 28(12): 955-960.
Jun YAO, Jinqiu ZHANG, Zhizhao PENG, Guanglei ZHANG. Influence of Fe Content and Particle Size of Carbonyl Iron Powder on Shear Yield Stress of Magnetorheological Fluids[J]. Chinese Journal of Materials Research, 2014, 28(12): 955-960.

全文: PDF(1777 KB)   HTML
摘要: 

研究了羰基铁粉中Fe含量和颗粒粒径对磁流变液的剪切屈服强度影响。结果表明, 不同载液磁流变液的最大剪切屈服强度随着Fe含量的增大和软磁性颗粒粒径的增大而提高。推导了铁含量和粒径两个影响因素的比例关系, 得到了颗粒粒径和Fe含量相互的权重关系, 并进行了验证, 发现Fe含量对磁流变液的剪切屈服强度的影响比颗粒粒径的影响更大。最后, 分析了实验误差, 证明实验结论是有效的。

关键词 金属材料磁流变液Fe含量颗粒粒径剪切屈服强度    
Abstract

The influence of Fe content and particle size of carbonyl iron powder on shear yield stress of magnetorheological fluids were investigated. The results show that the max shear yield stress of magnetorheological fluids with different carrier oil increases with the increasing Fe content, as well as the increasing particle size respectively. A formula is deduced to assess the weight factor related with the effect of Fe content and particle size on the performance of MRF, which was then optimal through experimental approach. It follows that the Fe content of carbonyl iron powder weighs higher than the particle size in terms of their contribution to the enhancement of shear yield stress. In the end, the possible errors have been analyzed, so that to prove the validity of experiments carried out above.

Key wordsmetallic materials    magnetorheological fluids    Fe content    particle size    shear yield stress
收稿日期: 2014-07-16     
Number Carbon iron Carrier oil Weight percentage of magnetism particles in MRF
1 98.34%Fe Silicone oil 201-50 70%
2 99.58%Fe Silicone oil 201-1000 75%
3 Special synthesis mineral oil 80%
表1  实验材料及颗粒质量分数
Number Carbon iron Carrier oil Weight percentage of magnetism particlees in MRF
1 2.50(99.58%) Silicone oil 201-50 70%
2 6.20(99.5%) Silicone oil 201-1000 75%
3 Special synthesis mineral oil 80%
表2  实验原料及颗粒质量分数
图1  不同载液羰基铁粉质量分数不同的磁流变液剪切屈服强度
Number (class 1) Shear yield stress( k P a ) Number (class 2) Shear yield stress( k P a ) Increasing rate (%)
1-MRF-111 36.26 1-MRF-211 37.26 2.76
1-MRF-112 38.68 1-MRF-212 42.56 10.03
1-MRF-113 48.34 1-MRF-213 53.18 10.01
1-MRF-121 43.51 1-MRF-221 46.89 7.82
1-MRF-122 49.86 1-MRF-222 53.18 6.54
1-MRF-123 55.60 1-MRF-223 58.01 4.33
1-MRF-131 39.68 1-MRF-231 41.09 3.52
1-MRF-132 42.51 1-MRF-232 47.12 10.84
1-MRF-133 50.76 1-MRF-233 57.56 13.40
表3  同一粒径不同Fe含量的磁流变液的最大剪切屈服强度(790 mT)
Number(class 3) Shear yield stress( k P a ) Number(class 4) Shear yield stress( k P a ) Increasing rate(%)
2-MRF-111 37.26 2-MRF-211 42.97 15.32
2-MRF-112 42.56 2-MRF-212 50.13 17.79
2-MRF-113 53.18 2-MRF-213 57.30 7.75
2-MRF-121 46.89 2-MRF-221 62.07 32.37
2-MRF-122 53.18 2-MRF-222 66.85 25.71
2-MRF-123 58.01 2-MRF-223 71.62 23.46
2-MRF-131 41.09 2-MRF-231 47.45 15.48
2-MRF-132 47.12 2-MRF-232 56.88 20.71
2-MRF-133 57.56 2-MRF-233 65.68 14.11
表4  含不同粒径磁性颗粒的磁流变液最大剪切屈服强度(790 mT)
图2  不同载液不同羰基铁粉质量分数的磁流变液剪切屈服强度的验证
Number Max shear yield stress τ y /kPa Particle size p /μm Saturation magnetization M s /(emu/g)
2-MRF-131 41.09 2.50 262.67
3-MRF-1 48.13 5.70 249.07
2-MRF-132 49.66 2.50 262.67
3-MRF-2 57.30 5.70 249.07
表5  样品的基本参数
1 TANG Long,LU Liping, YUE En, LUO Shunan, ZHANG Ping, Research and applications of magnetorheological fluids, Journal of Chongqing University of Technology, 27(12), 44(2013)
1 (唐 龙, 卢利平, 岳 恩, 罗顺安, 张平, 磁流变液的研究与应用, 重庆理工大学学报, 27(12), 44(2013))
2 JU Benxiang,YU Miao, FU Jie, Influence of carbon content of carbonyl iron powder on MR effect of magnetorheological elastomer, Journal of Chongqing University, 35(8), 17(2012)
2 (居本祥, 于 淼, 浮 洁, 羰基铁粉的C含量对磁流变弹性体磁流变效应的影响, 重庆大学学报, 35(8), 17(2012))
3 R. F. Ierardi, A. J. F. Bombard,Off-state viscosity and yield stress optimization of magnetorheological fluids: a mixture design of experiments approach, 11th Conference on Electrorheological Fluids and Magnetorheological Suspensions, 2009
4 GONG Zhiwei,DU Chengbin, YU Guojun, Comparison of the characteristics of carbonyl iron-based magnetorheological fluid with single-sized and dual-sized particles, Function material, V(42), 809(2011)
4 (龚志伟, 杜成斌, 于国军, 单一粒径与两种粒径羰基铁粉磁流变液特性的实验比较研究, 功能材料, V(42), 809(2011))
5 CUAN Hongliang,ZHANG Jinqiu, KONG Yanan, ZHANG Jian, The influence of nano-Fe3O4addition on the performance of magnetorhelogical fluid for tracked vehicle, J Magn Mater Devices, 42(3), 34(2011)
5 (爨红亮, 张进秋, 孔亚男, 张 建, 纳米Fe3O4对装甲车辆用磁流变液性能的影响, 磁性材料及器件, 42(3), 34(2011))
6 I. G. Kim, J. E. Kim, Y. D. Liu, H. J. Choi,Polyamide Coated Soft Magnetic Microspheres and Their Magnetorheology, IEEE Transactions on Magnetics, 48(11), 3446(2012)
7 Y. D. Liu, J. Lee, S. B. Choi, H. J. Choi,Silica-coated carbonyl iron microsphere based magnetorheological?uid and its damping force characteristics, Smart Materials and Structures, 22, (2013)
8 H. H. Sim, S. H. Kwon, H.J.Choi,Xanthan gum-coated soft magnetic carbonyl iron composite particles and their magnetorheology, Colloid Polym Sci, 963(2013)
9 Y. D. Liu, F. F. Fang, H. J. Choi,Core-shell-structured silica-coated magnetic carbonyl iron microbead and its magnetorheology with anti-acidic characteristics, Colloid Polym Sci, 289, 1295(2011)
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.