Please wait a minute...
材料研究学报  2014, Vol. 28 Issue (12): 949-954    DOI: 10.11901/1005.3093.2014.328
  本期目录 | 过刊浏览 |
纳米LiFePO4/C复合材料的制备和性能*
秦显忠1,杨改2,马烽1(),蔡飞鹏2,胡素琴2
1. 齐鲁工业大学化学与制药工程学院 济南 250353
2. 山东省科学院能源研究所 山东省生物质气化技术重点实验室 济南 250014
Synthesis and Properties of Nano-LiFePO4/C Composites
Xianzhong QIN1,Gai YANG2,Feng MA1,**(),Feipeng CAI2,Suqin HU2
1. Institute of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan 250353
2. Key Laboratory of Biomass Gasification Technology, Shandong Institute of Energy Sciences, Jinan 250014
引用本文:

秦显忠,杨改,马烽,蔡飞鹏,胡素琴. 纳米LiFePO4/C复合材料的制备和性能*[J]. 材料研究学报, 2014, 28(12): 949-954.
Xianzhong QIN, Gai YANG, Feng MA, Feipeng CAI, Suqin HU. Synthesis and Properties of Nano-LiFePO4/C Composites[J]. Chinese Journal of Materials Research, 2014, 28(12): 949-954.

全文: PDF(3448 KB)   HTML
摘要: 

以Fe(NO3)39H2O、H3PO4和稀氨水为原料, 用控制结晶法制备FePO4xH2O, 研究了表面活性剂CTAB和PEG对FePO4xH2O材料的影响。再以Li2CO3、蔗糖和高温烧结后的FePO4为原料用碳热还原法制备了纳米LiFePO4/C复合材料。用SEM、XRD、充放电测试、循环伏安测试等手段对该复合材料进行表征, 研究其电化学性能。结果表明: 添加表面活性剂制备的LiFePO4/C复合材料纳米颗粒呈球形且团聚减少, 提高了材料的倍率性能和循环性能, 其中添加CTAB制备的LiFePO4/C材料的颗粒最小、分散性较好, 0.1C时的首次放电比容量为159.8 mAhg-1, 10C倍率下比容量仍达到132.4 mAhg-1

关键词 复合材料控制结晶法表面活性剂碳热还原法磷酸铁锂    
Abstract

FePO4·H2O precursor was synthesized by the co-precipitation method from raw materials Fe (NO3)3·9H2O, H3PO4 and NH3·H2O, which then was modified by surfactants hexadecyl trim ethyl ammonium bromide (CTAB) and polyethylene glycol (PEG). Finally LiFePO4 /C composites were synthesized with the as-prepared FePO4·2H2O, Li2CO3 and sucrose as raw materials. The LiFePO4 /C composites were characterized by means of X-ray diffractormeter (XRD) and scanning electron microscope (SEM). Their performance was determined by cyclic voltammograms (CV) and electrochemical measurement.. The results show that the presence of surfactants CTAB and PEG may be beneficial to suppressing the agglomeration of the particles of the composites; thereby their electrochemical properties were enhanced. The LiFePO4/C particles synthesized with surfactant CTAB modified FePO42H2O exhibit excellent dispersive ability with particle mean size 170nm and excellent cycle performance and rate properties i.e. a discharge specific capacity 159.8 mAhg-1 at 0.1C as well as a value higher than 132.4 mAhg-1 even at 10C.

Key wordscomposites    surfactants    controlled crystallization method    carbon thermal reduction    lithium iron phosphate
收稿日期: 2014-07-06     
图1  预处理后FePO4的XRD谱图
图2  LiFePO4的XRD谱图
图3  FePO4前驱体粉末的SEM像
图4  合成LiFePO4/C的SEM像
图5  0.1 C倍率下合成的LiFePO4 /C的首次放电曲线
图6  LiFePO4/C材料在不同倍率下的恒流放电比容量-循环曲线
图7  LiFePO4/C材料在不同倍率下的恒流放电电压-循环曲线
1 WANG Yuhong,MEI Rui, YANG Xiaomin, Enhanced electrochemical properties of LiFePO4 /C synthesized with two kinds of carbon sources, PEG-4000 (organic) and Super p (inorganic), Ceramics International, 40(6), 8439(2014)
2 LV Yiju,SU Jing, LONG Yunfei, CUI Xiaoru, LV Xiaoyan, WEN Yanxuan, Effects of ball to powder weight ratio on the performance of LiFePO4 /C prepared by wet milling assisted carbothermal reduction, Powder Technology, 253(12), 467(2014)
3 Rafael Trócoli,Sylvain Franger, Manuel Cruz, Julián Morales, Jesús Santos-Pe?a, Improving the electrochemical properties of nanosized LiFePO4 based electrode by carbon doping, Electrochemical Acta, 135(20), 558(2014)
4 YU Yang,LI Qianwen, MA Yanmei, ZHANG Xing, ZHU Yongchun, QIAN Yitai, Shape controlled hydrothermal synthesis and characterization of LiFePO4 for lithium ion batteries, Journal of nanoscience and nanotechnology, 13(2), 1515(2013)
5 Shahid Raza, Murugavel Sevi. Particle size dependent confinement lattice strain effects in LiFePO4, Physical chemistry, 15(43), 809(2013)
6 Ondrej Cech, Jorge E. Thomas,Marie Sedlarikova, Andrea Fedorkova, Jiri Vondrak, Mario Sergio Moreno, Arnaldo Visintin. Performance improvement on LiFePO4/C composite cathode for lithium-ion batteries. Solid State Sciences, 20(2), 110(2013)
7 PAN Maosen,ZHOU Zhentao, Carbon rich surface of LiFePO4 grain enhancing its rate capability, Materials Letters, 65(7), 1131(2011)
8 Sung Woo Oh,Seung-Taek Myung, Seung-Min Oh, Kyu Hwan Oh, Khalil Amine, Bruno Scrosati and Yang-Kook Sun, Double carbon coating of LiFePO4 as high rate electrode for rechargeable lithium batteries, Advanced Materials, 22(43), 4842(2010)
9 CHEN Jin,YAN Liuming, Nano-layered LiFePO4 particles converted from nano-layered ferrous phenyl phosphate templates, Journal of Power Sources, 209(12), 7(2012)
10 Kim JunIl,Roh Kwang Chul, Lee JaeWon, Nanocomposite of LiFePO4 and mesoporous carbon for high power cathode of lithium rechargeable batterie, Journal of Nanoscience and Nanotechnology, 12(11), 75(2013)
11 Cattoz B,Cosgrove T, Crossman M, Surfactant mediate desorptin of polymer from the nanoparticle interface, Langmuir: the ACS Journal of Surfaces and Colloides, 28(5), 2485(2012)
12 Sun C S,Zhang Y, Zhang X J, Zhou Z, Structural and electrochemical properties of Cl-doped LiFePO4/C, Journal of Power Sources, 195(11), 3680(2010)
13 Cho Yungda,Fey George Tingkuo, Kao Hsienming, The effect of carbon coating thickness on the capacity of LiFePO4 /C composite cathodes, Journal of Power Sources, 189(1), 256(2009)
14 Ni Jiangfeng,Morishita Masanori, Kawabe Yoshiteru, Watada Masaharu, Takeichi Nobuhiko, Sakai Tetsuo, Hydrothermal preparation of LiFePO4 nanocrystals mediated by organic acid, Journal of Power Sources, 195(9), 2877(2010)
15 Peng Zhongdong,Tang Daichun, Hu Guorong, Du Ke, Cao Yanbing, Synthesis and?electrochemical?performance of?LiFePO4/C by homogeneous precipitation?method, The Chinese?Journal of Nonferrous?Metals, 319(7), 1320(2012)
15 (彭忠东, 唐代春, 胡国荣, 杜 柯, 曹雁冰. 均匀沉淀法制备LiFePO4/C及其电化学性能. 中国有色金属学报, 319(7), 1320(2012))
16 Jung Min Kim,Gi-Ra Yi, Soon Chang Lee, Sang Moon Lee, Younghun Jo, Hyun-Wook Kang, Gaehang Lee, Hae Jin Kim, Surfactant-assisted synthesis of hybrid lithium iron phosphate nanoparticles for enhancing electrochemical performance, Journal of Solid State Chemistry, 197(13), 53(2013)
17 CHENG Ke,WANG Xiaodong, LAN Yachao, YANG Jianjun, WU Zhishen, ZHANG Zhijun, Preparation and characterization of LiFePO4/C cathode materials with high-rate performance, Acta Materiae Compositae Sinica, 30(1), 136(2013)
17 (程 科, 王晓冬, 兰亚超, 杨建军, 吴志申, 张治军, 高倍率性能磷酸亚铁锂/碳正极材料的制备与表征, 复合材 料学报, 30(1), 136(2013))
18 Wang Guan,Preparation and performance study of LiFePO4 as cathode material for lithium ion battery, PhD Thesis, Shanghai: Fudan University, 2006
18 (王 冠, 锂离子电池正极材料LiFePO4制备及其性能研究, 博士学位论文, 上海复旦大学, 2006)
19 Whittingham M Stanley,Song Yanning, Lutta Samuel, Y. Zavalij Peter, Chernova Natasha A, Some transition metal (oxy) phosphates and vanadium oxides for lithium batteries, Journal of Materials Chemistry, 15(3), 3362(2005)
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.