Please wait a minute...
材料研究学报  2014, Vol. 28 Issue (11): 865-872    DOI: 10.11901/1005.3093.2014.300
  本期目录 | 过刊浏览 |
Ag+/Ag-TiO2纳米空心球制备及其可见光催化性能*
石莉萍1,刘纯1,2(),殷恒波2,王爱丽2,王丽君1
1. 北华大学化学与生物学院 吉林 132013
2. 江苏大学化学化工学院 镇江 212013
Preparation and Visible Light Photocatalytic Activties of Hollow Nanospheres of Ag+/Ag-TiO2
Liping SHI1,Chun LIU1,2,**(),Hengbo YIN2,Aili WANG2,Lijun WANG1
1. College of Chemistry and Biology, Beihua University, Jilin 132013
2. Faculty of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013
引用本文:

石莉萍,刘纯,殷恒波,王爱丽,王丽君. Ag+/Ag-TiO2纳米空心球制备及其可见光催化性能*[J]. 材料研究学报, 2014, 28(11): 865-872.
Liping SHI, Chun LIU, Hengbo YIN, Aili WANG, Lijun WANG. Preparation and Visible Light Photocatalytic Activties of Hollow Nanospheres of Ag+/Ag-TiO2[J]. Chinese Journal of Materials Research, 2014, 28(11): 865-872.

全文: PDF(4182 KB)   HTML
摘要: 

在TiO2/聚苯乙烯复合材料表面沉积硫化银, 空气中煅烧制备了Ag+/Ag修饰的二氧化钛纳米空心球(Ag+/Ag-TiO2纳米空心球, 即Ag+/Ag-HTS)。结果表明, 所制备的Ag+/Ag-HTS具有可见光催化降解甲基橙的活性, 随着甲基橙的初始浓度降低其催化降解效率提高。肖特基势垒的形成有助于更多的空穴转移到材料的表面, 增强其光催化效率; 表面的Ag+有助于电子的清除, 防止光激电子与光激空穴复合。随着硫化银沉积数量的提高, Ag+/Ag-HTS的可见光催化活性提高, 其光催化降解甲基橙的反应具有假一级反应的动力学特征。使用25% Ag+/Ag-HTS光催化剂, 在可见光下照射2 h甲基橙降解率高达70.6%。

关键词 复合材料可见光催化剂肖特基势垒湿化学沉积法二氧化钛纳米空心球    
Abstract

Hollow nanospheres of Ag+/Ag-TiO2 (Ag+/Ag-HTS) were synthesized by a two step process i.e. firstly Ag2S was deposited on the surface of TiO2/polystyrene composites and subsequently the decorated composites were calcinated in air. The results show that all of the Ag+/Ag-HTS have good visible light photocatalytic activities for the photodegradation of methyl orange. It possesses a high efficiency for photodegradation of methyl orange as the solutions with low concentration of methyl orange. The presence of Schottky barrier may facilitate the migration of vacancies to the surface of Ag+/Ag-HTS and thereby enhance its photocatalytic efficiency. Ag+ in the catalyst is helpful to scavenge photoelectrons to prevent the recombination of electrons and vacancies. The photocatalytic activity of the Ag+/Ag-HTS increases with the increase of the amount of deposited Ag2S in the first step of synthesis process. The degradation of methyl orange by Ag+/Ag-modified hollow titania nanosphere photocatalysts fitted the pseudo-first-order kinetics. When the mass ratio of Ag2S to TiO2 was 25%, the photodegradation efficiency for methyl orange was up to 70.6% under visible light irradiation for 2 h.

Key wordscomposites    visible light photocatalysis    Schottky barrier    wet chemical deposition method    hollow titania nanosphere
收稿日期: 2014-06-26     
基金资助:* 吉林省科技发展计划项目201105042、吉林省教育厅“十二五”规划项目(吉科教合字[2011]第140号,吉科教合字[2014]第187号)资助。
Ag+/Ag-HTS A A g 2 S O 4 AAg 100× A A g 2 S O 4 / (AAg+ A A g 2 S O 4 )
2θ=31.104° 2θ=38.115°
10%-Ag2S 44 36 55.0
15%- Ag2S 79 47 62.7
20%- Ag2S 119 52 70.0
25%- Ag2S 95 62 60.5
表1  不同样品Ag2SO4的相对量
Ag+/Ag-HTS AA AR AB wA/% wR/% wB/%
2θ=25.28° 2θ=27.44° 2θ=30.8°
0%- Ag2S 207 7 8 86.4 3.3 10.3
10%-Ag2S 210 15 8 83.5 6.7 9.8
15%- Ag2S 195 11 9 83.0 5.3 11.8
20%- Ag2S 154 11 12 75.8 6.1 18.1
25%- Ag2S 96 13 14 62.5 9.5 28.0
表2  Ag+/Ag-HTS样品TiO2不同相的比率
图1  Ag+/Ag-HTS样品的XRD谱
图2  PSM、HTS和Ag+/Ag-HTS样品的SEM像
图3  HTS和Ag+/Ag-HTS样品的漫反射图, 插图为修正的Kubelka-Munck函数对hv作图
图4  HTS和Ag+/Ag-HTS样品修正的Kubelka-Munck函数对hv作图, 插图为相应的漫反射图
图5  在可见光(500W钨灯)照射下, Ag+/Ag-HTS、HTS、P25 存在时对甲基橙(5-20 mg·L-1)的降解
图6  甲基橙不同初始浓度的ln(c/c0)-t 图
图7  Ag+/Ag-HTS可见光催化反应机理
Photocatalyst kapp/min-1(R2)
c0:~20 mgL-1 c0:~15 mgL-1 c0:~10 mgL-1 c0:~5 mgL-1
HTS 0.00247(0.9776) 0.00301(0.9918) 0.00407(0.9993) 0.00659(0.9911)
10%Ag+/Ag-HTS 0.00138(0.9909) 0.00178(0.9913) 0.00323(0.9948) 0.00454(1.0000)
15%Ag+/Ag-HTS 0.00168(0.9996) 0.00241(0.9988) 0.00358((0.9958) 0.00604(0.9978)
20%Ag+/Ag-HTS 0.00195(0.9956) 0.00249(0.9938) 0.00502(0.9917) 0.0074(0.9941)
25%Ag+/Ag-HTS 0.00205(0.9995) 0.00272(0.9971) 0.00518(0.9983) 0.01008(0.9982)
表3  甲基橙不同初始浓度的降解速率常数
1 M. A. Henderson,A surface science perspective on TiO2 photocatalysis, Surface Science Reports, 66, 185(2011)
2 Atsushi Kogo,Nobuyuki Sakai, Tetsu Tatsuma, Photocatalysis of Au25-modified TiO2 under visible and near infrared light, Electrochemistry Communications, 12, 996(2010)
3 Jingjing Xu,Mindong Chen, Degang Fu. Study on highly visible light active Bi-doped TiO2 composite hollow sphere. Applied Surface Science, 257, 7381(2011)
4 Guohui Tian,Yajie Chen, Kai Pan, Dejun Wang, Wei Zhou, Zhiyu Ren, Honggang Fu, Ef?cient visible light-induced degradation of phenol on N-doped anatase TiO2 with large surface area and high crystallinity, Applied Surface Science, 256, 3740(2010)
5 Hua Xu,Zhi Zheng, Lizhi Zhang, Hailu Zhang, Feng Deng, Hierarchical chlorine-doped rutile TiO2 spherical clusters of nanorods: Large-scale synthesis and high photocatalytic activity. Journal of Solid State Chemistry, 181, 2516(2008)
6 Guidong Yang,Zheng Jiang, Huahong Shi, Martin O. Jones, Tiancun Xiao, Peter P. Edwards, Zifeng Yan, Study on the photocatalysis of F–S co-doped TiO2 prepared using solvothermal method, Applied Catalysis B: Environmental, 96, 458(2010)
7 Ying Cui,Hao Du , Lishi Wen, Doped-TiO2 Photocatalysts and Synthesis Methods to Prepare TiO2 Films, Journal of Materials Science & Technology, 24(5), 675(2008)
8 Cheewita Suwanchawalit,Sumpun Wongnawa, Pimpaporn Sriprang, Pachara Meanha, Enhancement of the photocatalytic performance of Ag-modified TiO2 photocatalyst under visible light, Ceramics International, 38, 5201(2012)
9 Liming Jiang,Guo Zhou, Jia Mi, Zhenyu Wu, Fabrication of visible-light-driven one-dimensional anatase TiO2/Ag heterojunction plasmonic photocatalyst, Catalysis Communications, 24, 48(2012)
10 li Akbar Ashkarran,Seyed Mahyad Aghigh, Mona kavianipour, Neda Jalali Farahani, Visible light photo-and bioactivity of Ag/TiO2 nanocomposite with various silver contents, Current Applied Physics, 11, 1048(2011)
11 Qifeng Chen,Weimei Shi, Yao Xu, Dong Wu, Yuhuan Sun, Visible-light-responsive Ag-Si codoped anatase TiO2 photocatalyst with enhanced thermal stability, Materials Chemistry and Physics, 125, 825(2011)
12 L Gomathi Devi, B. Nagaraj, K. Eraiah Rajashekhar,Synergistic effect of Ag deposition and nitrogen doping in TiO2 for the degradation of phenol under solar irradiation in presence of electron acceptor, Chemical Engineering Journal, 181, 259(2012)
13 B. Ohtani,Photocatalysis A to Z-What we know and what We donot know in a seientific sense, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 11, 157(2010)
14 XIE Xide, LU Dong,Energy Band Theory of Solids (Shanghai, Fudan University Press, 1998)p., 160-161, 244
14 (谢希德, 陆栋, 固体能带理论 (上海, 复旦大学出版社, 1998) 160-161, 244)
15 Xingdang Hou,Meidong Huang, XiaoLing Wu, Andong Liu, Preparation and studies of photocatalytic silver-loaded TiO2 films by hybrid sol–gel method, Chemical Engineering Journal, 146, 42(2009)
16 Chun Liu,Chen Ge, Hengbo Yin, Min Ren, Yunsheng Zhang, Longbao Yu, Tingshun Jiang, Synthesis of porous hollow silica spheres using functionalized polystyrene latex spheres as templates, Korean Journal of Chemical Engineering, 28(6), 1458(2011)
17 Chun Liu,Hengbo Yin, Aili Wang, Zhanao Wu, Gang Wu, Tao Jiang, Shen Yutang, Jiang Tingshun, Size-controlled preparation of hollow silica spheres and glyphosate release, Transactions of Nonferrous Metals Society of China, 22, 1161(2012)
18 Min Ren,Hengbo Yin, Zhangzhun Lu, Aili Wang, Longbao Yu, Tingshun Jiang, Evolution of rutile TiO2 coating layers on lamellar sericite surface induced by Sn4+and the pigmentary properties, Powder Technology, 204, 249(2010)
19 Desong Wang,Jie Zhang, Qingzhi Luo, Xueyan Li, Yandong Duan, Jing An, Characterization and photocatalytic activity of poly(3- hexylthiophene)-modified TiO2 for degradation of methyl orange under visible light, Journal of Hazardous Materials, 169, 546(2009)
20 ZHANG Qinglian, SHEN Panwen,YIN Jingzhi, CAO Xizhang, LV Yunyang, TANG Renhuan, Inorganic Chemistry Series, Vol.6 (Beijing, Science Press, 1984)p.576, 577
20 (张青莲, 申泮文, 尹敬执, 曹锡章, 吕云阳, 唐任寰, 无机化学丛书(第六卷) (北京, 科学出版社 , 1984)576, 577)
21 Hengzhong Zhang,Jillian F Banfield. Understanding Polymorphic Phase Transformation Behavior during Growth of Nanocrystalline Aggregates: Insights from TiO2, Journal of Physical Chemistry B, 104, 3481(2000)
22 SHI Liping,LIU Chun, Controllable preparation of polystyrene-methylacrylic acid latex templates and silica hollow spheres, Journal of Jiangsu University(Natural Science Edition), 33(6), 705(2012)
22 (石莉萍, 刘 纯, 聚苯乙烯-甲基丙烯酸模板与SiO2空心微球可控性制备, 江苏大学学报自然科学版, 33(6), 705(2012))
23 Agatino Di Paola,Giovanni Cufalo, Maurizio Addamo, Marianna Bellardita, Renzo Campostrini, Marco Ischia, Riccardo Ceccato, Leonardo Palmisano, Photocatalytic activity of nanocrystalline TiO2 (brookite, rutile and brookite- based) powders prepared by thermohydrolysis of TiCl4 in aqueous chloride solutions, Colloids and Surfaces A: Physicochem. Eng. Aspects, 317, 366(2008)
24 F. P. Koffyberg, K. Dwight,A. Wold,Interband transitions of semiconducting oxides determined from photoelectrolysis spectra, Solid State Commun, 30, 433(1979)
25 Hongqi Sun,Shaobin Wang, H. Ming Ang, Moses O. Tadé, Qin Li, Halogen element modified titanium dioxide for visible light photocatalysis, Chemical Engineering Journal, 162, 437(2010)
26 Chun Liu,Hengbo Yin, Liping Shi, Aili Wang, Yonghai Feng, Linqin Shen, Zhanao Wu, Gang Wu, Tao Jiang, Preparation of hollow titania spheres and their photocatalytic activity under visible light, Journal of Nanoscience and Nanotechnology, 14(9), 7072(2014)
27 Chweihuann Chiou,Chengying Wu, Rueyshin Juang, Photocatalytic degradation of phenol and m-nitrophenol using irradiated TiO2 in aqueous solutions, Separation and Purification Technology, 62, 559(2008)
28 FANG Shijie,XU Mingxia, HUANG Weiyou, ZHANG Yuzhen, Photocatalytic degradation of methyl orange on nanocryetalline TiO2, Journal of the Chinese Ceramic Society, 29(5), 439(2001)
28 (方世杰, 徐明霞, 黄卫友, 张玉珍, 纳米TiO2光催化降解甲基橙, 硅酸盐学报, 29(5), 439(2001))
29 Mohammad Abdullah, Gary K. -C. Low, Ralph W. Matthews,Effects of common inorganic anions on rates of photocatalytic oxidation of organic carbon over illuminated titanium dioxide, Journal of Physical Chemistry, 94(17), 6820(1990)
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.