Please wait a minute...
材料研究学报  2015, Vol. 29 Issue (1): 75-80    DOI: 10.11901/1005.3093.2014.284
  本期目录 | 过刊浏览 |
镍钴锰/钛酸锂电池体系的热稳定性*
伍科1,冯丽华2,陈满1,刘邦金1,平平2,王青松2()
1. 中国南方电网有限责任公司调峰调频发电公司 广州 511400
2. 中国科学技术大学火灾科学国家重点实验室 合肥 230026
Thermal Stability of Li(NixCoyMnz)O2/Li4Ti5O12 Battery
Ke WU1,Lihua FENG2,Man CHEN1,Bangjin LIU1,Ping PING2,Qingsong WANG2,**()
1. China Southern Power Grid Power Generation Company, Guangzhou 511400, China
2. State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, China
引用本文:

伍科,冯丽华,陈满,刘邦金,平平,王青松. 镍钴锰/钛酸锂电池体系的热稳定性*[J]. 材料研究学报, 2015, 29(1): 75-80.
Ke WU, Lihua FENG, Man CHEN, Bangjin LIU, Ping PING, Qingsong WANG. Thermal Stability of Li(NixCoyMnz)O2/Li4Ti5O12 Battery[J]. Chinese Journal of Materials Research, 2015, 29(1): 75-80.

全文: PDF(1446 KB)   HTML
摘要: 

使用C80微量量热仪测试钛酸锂电池主要材料的热稳定性, 分析了正负极的热分解及其与电解液的反应热特性和电池体系的反应热特性。结果表明, 在镍钴锰三元正极材料与电解液共存时, 在升温条件下经历2次放热过程, 总反应热为-526.0 Jg-1, 反应活化能为273.8 kJmol-1; 在Li4Ti5O12负极材料与电解液共存时, 在升温条件下经历4次放热过程, 总反应热为-291.5 Jg-1, 反应活化能为61.8 kJmol-1。钛酸锂全电池体系的放热反应历程表现为正负极与电解液共存体系反应过程的叠加, 热失控的触发主要是负极与电解液的热反应引起, 而热失控的主要热量来自正极与电解液的放热反应。

关键词 无机非金属材料锂离子电池钛酸锂热稳定性    
Abstract

The thermal stability of the main constructive materials for Li(NixCoyMnz)O2/Li4Ti5O12 batteries was evaluated using a C80 micro calorimeter. The thermal decomposition of anode and cathode, the heat of reactions of electrolyte with anode and cathode, and the heat of reactions of an integral cell were characterized. It follows that with rising temperature the system of anode Li(NixCoyMnz)O2/electrolyte undergoes two exothermic processes with a total heat generation of -526.0 Jg-1 and activation energy of 273.8 kJmol-1; while the system of Li4Ti5O12/electrolyte undergoes four exothermic processes with a total heat generation of -291.5 Jg-1 and activation energy of 61.8 kJmol-1; the reaction processes for an integral cell are the overlap of the reaction processes occurred in the two half cells Li(NixCoyMnz)O2/electrolyte and Li4Ti5O12/electrolyte. The heat runaway phenomenon is triggered by the reactions of the anode/electrolyte, while, of which the main heat source may come from the reactions of the cathode/electrolyte.

Key wordsinorganic non-metallic materials    lithium ion battery    Li4Ti5O12    thermal stability
收稿日期: 2014-06-13     
基金资助:* 国家自然科学基金51176183和国家高新技术研究发展计划2011AA05A111资助项目。
图1  Li(NixCoyMnz)O2正极材料升温时的热流曲线
图2  Li(NixCoyMnz)O2与电解液共存体系的热流曲线
图3  Li4Ti5O12负极材料的升温热流曲线
图4  Li4Ti5O12与电解液共存体系的升温热流曲线
图5  1.0 mol/L LiPF6/EC+DEC和1.0 mol/L LiPF6/EC+DMC的升温热流曲线
图6  镍钴锰/钛酸锂全电池升温热流曲线图
Serial No. Thermal analysis object ?H/Jg?1 E/kJmol?1 A/s?1
1 Li(NixCoyMnz)O2 cathode ?52.2 465.8 6.9×1048
2 Li4Ti5O12 anode ?71.5 521.3 4.1×1053
3 Li(NixCoyMnz)O2 cathode+electrolyte ?526.0 273.8 8.6×1024
4 Li4Ti5O12 anode+electrolyte ?291.5 61.8 9.8×102
表1  钛酸锂电池材料热力学和动力学参数
  
1 WANG Qingsong,SUN Jinhua, YAO Xiaolin, CHEN Chunhua, Thermal behavior inside lithium-ion batteries, Chinese Journal of Applied Chemistry, 23(5), 489(2006)
1 (王青松, 孙金华, 姚晓林, 陈春华, 锂离子电池中的热效应, 应用化学, 23(5), 489(2006))
2 WANG Qingsong,SUN Jinhua, CHEN Sining, YAO Xiaolin, CHEN Chunhua, Research progress in thermal safety of Li-ion batteries, Battery Bimonthly, 135(3), 240(2005)
2 (王青松, 孙金华, 陈思凝, 姚晓林, 陈春华, 锂离子电池热安全性的研究进展, 电池, 135(3), 240(2005))
3 Q. S. Wang, P. Ping, X. J. Zhao, G. Q. Chu, J. H. Sun, C. H. Chen,Thermal runaway caused fire and explosion of lithium ion battery, Journal of Power Sources, 208, 210(2012)
4 J. H. Sun, X. R. Li, K. Hasegawa, G. X. Liao,Thermal hazard evaluation of complex reactive substance using calorimeters and dewar vessel, Journal of Thermal Analysis and Calorimetry, 6(3), 883(2004)
5 WANG Qingsong,SUN Jinhua, Study on the materials thermal properties of lithium ion secondary batteries by using C80 calorimeter, Chinese Journal of Power Sources, 31(8), 592(2007)
5 (王青松, 孙金华, 用C80量热仪研究锂离子蓄电池材料热特性, 电源技术, 31(8), 592(2007))
6 O. Dolotko, A. Senyshyn, M. J. Mühlbauer, K. Nikolowski, H. Ehrenberg,Understanding structural changes in NMC li-ion cells by in situneutron diffraction, Journal of Power Sources, 255, 198(2014)
7 J. Wang, H. L. Zhao, Y. T. Wen, J. Y. Xie, Q. Xia, T. H. Zhang, Z. P. Z, X. F. Du,High performance Li4Ti5O12 material as anode for lithium-ion batteries, Electrochimica Acta, 113, 679(2013)
8 S. Scharner, W. Weppner, P. Schmid-Beurmann,Evidence of two-phase formation upon lithium insertion into the Li1.33 Ti1.67O4, Journal of the Electrochemical Society, 146(3), 857(1999)
9 Q. S. Wang, J. H. Sun, X. L. Yao, C. H. Chen,C80 calorimeter studies of the thermal behavior of LiPF6 solutions, Journal of Solution Chemistry, 35(2), 183(2006)
10 T. Kawamura, A. Kimura, M. Egashira, S. Okada, J. Yamaki,Thermal stability of alkyl carbonate mixed-solvent electrolytes for lithium ion cells, Journal of Power Sources, 104, 260(2002)
11 J. S. Gnanaraj, E. Zinigrad, L. Asraf, H. E. Gottlieb, M. Sprecher, M. Schmidt, W. Geissler, D. Aurbach,A detailed investigation of the thermal reactions of LiPF6 solution in organic carbonates using ARC and DSC, Journal of the Electrochemical Society, 150, A1533(2003)
12 K. Tasaki, K. Kanda, S. Nakamura, M. Ue,Decomposition of LiPF6 and stability of PF5 in li-ion battery electrolytes, Journal of the Electrochemical Society, 150, A1628(2003)
13 Y. Ono,Dimethyl carbonate for environmentally benign reactions, Pure and Applied Chemistry, 68, 367(1996)
14 SUN Jinhua, DING Hui, Evaluation of Chemical Thermal Hazard (Beijing, Science Press, 2005)p.141-144
14 (p.141-144)
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.
[7] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[8] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[9] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[10] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[11] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[12] 刘东璇, 陈平, 曹新荣, 周雪, 刘莹. 碗状C@FeS2@NC复合材料的制备及其电化学性能[J]. 材料研究学报, 2023, 37(1): 1-9.
[13] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[14] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[15] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.