Please wait a minute...
材料研究学报  2014, Vol. 28 Issue (9): 656-662    DOI: 10.11901/1005.3093.2014.172
  本期目录 | 过刊浏览 |
HRS和LMC工艺对第三代镍基单晶高温合金DD33中显微孔洞的影响*
李相伟1,王莉1(),刘心刚1,王苏程2,楼琅洪1
1. 中国科学院金属研究所 高温合金部 沈阳 110016
2. 中国科学院金属研究所 沈阳材料科学国家(联合)实验室 沈阳 110016
Microporosity Reduction By Liquid Cooling Process of A Single Crystal Nickel Based Superalloy
Xiangwei LI1,Li WANG1,**(),Xingang LIU1,Sucheng WANG2,Langhong LOU1
1. Superalloys Division, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2. Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

李相伟,王莉,刘心刚,王苏程,楼琅洪. HRS和LMC工艺对第三代镍基单晶高温合金DD33中显微孔洞的影响*[J]. 材料研究学报, 2014, 28(9): 656-662.
Xiangwei LI, Li WANG, Xingang LIU, Sucheng WANG, Langhong LOU. Microporosity Reduction By Liquid Cooling Process of A Single Crystal Nickel Based Superalloy[J]. Chinese Journal of Materials Research, 2014, 28(9): 656-662.

全文: PDF(3757 KB)   HTML
摘要: 

采用高分辨透射X射线三维成像技术研究了传统高速凝固法(HRS)和液态金属冷却法(LMC)两种工艺制备的镍基单晶高温合金DD33中显微孔洞的三维尺寸信息, 结果表明: 与HRS相比, LMC工艺降低一次枝晶间距, 增加共晶体积分数, 使最后凝固阶段枝晶间的空隙尺寸变大, 压降降低, 最终降低了铸态孔的尺寸及体积分数。固溶处理后用两种工艺制备的合金中显微孔洞的体积分数都有所增加, 但是用LMC工艺制备的合金中较细的枝晶和较低的偏析程度, 使合金中固溶孔的体积分数显著低于用HRS工艺制备的合金。

关键词 金属材料单晶高温合金显微孔洞LMC高分辨透射X射线三维成像技术    
Abstract

Microporosity in a single crystal nickel-based superalloy DD33 solidified by high rate solidification (HRS) and liquid metal cooling (LMC) process was investigated by the X-ray tomography (XRT). It is found that the pressure drop was reduced because of the larger volume fraction of eutectic in the alloy solidified by LMC, which results in less solidification-pore (S-pore) formation. Homogenization-pore (H-pore) forms in interdendritic regions during solution heat treatment, which results in the increase of volume fraction of porosities during heat treatment. However, lower level of H-pore in the LMC samples can be attributed to the finer dendrite arm spacing and the lower segregation.

Key wordsmetallic materials    single crystal superalloy    microporosity    LMC    XRT
收稿日期: 2014-04-08     
基金资助:* 国家重点基础研究发展计划项目2010CB631201, 国家自然科学基金51201164和国家高技术研究发展计划项目2012AA03A511。
Cr Co W Mo Re Al Ti Ta Hf C Ni
DD33 2.5 9 6 1.5 4 6 0.2 8 0.1 0.01 Bal.
表1  实验合金DD33的名义成分
图1  枝晶偏析测量选取的枝晶干和枝晶间测试点位置示意图
图2  XRT获得的用HRS工艺制备的铸态样品的典型三维组织形貌
图3  不同凝固工艺铸态组织形貌
图4  HRS和LMC制备的合金的一次枝晶间距和共晶体积分数对比
图5  HRS和LMC制备的合金中元素的枝晶偏析
图6  铸态组织中孔洞的形貌
图7  不同工艺制备的铸态合金中孔洞的孔径分布
图8  HRS工艺凝固的合金经过1330℃/10 h固溶处理后的显微组织形貌
图9  不同凝固工艺制备的合金固溶处理前后显微孔洞的体积分数对比
图10  不同凝固工艺的合金固溶处理后孔的孔径分布
图11  泊肃叶定律示意图
图12  固溶孔形成原理
1 T. M. Pollock, W. H. Murphy, E. H. Goldman, D. L. Uram, J. S. Tu,In: Superalloys 1992, Grain Defect Formation during Directional Solidification of Nickel-Base Single Crystals, edited by S.D. Antolovich, R.W. Stusrud, R.A. Mackay, D.L. Anton, T. Khan, R.D. Kissinger, D.L. Klarstrom (Champion, TMS, 1992) p.125
2 P. Auburtin, T. Wang, S.L. Cockcroft, A. Mitchell,Freckle formation and freckle criterion in superalloy castings, Metall. Mater. Trans., 31(4), 801(2000)
3 J. Madison, J. E. Spowart, D. J. Rowenhorst, L. K. Aagesen, K. Thornton, T. M. Pollock,Fluid flow and defect formation in the three-dimensional dendritic structure of nickel-based single crystals, Metall. Mater. Trans., 43A(1), 369(2012)
4 A. F. Giamei, J. G. Tschinkel,Liquid metal cooling- new solidification technique, Metall. Trans., 7(9), 1427(1976)
5 A. J. Elliott, S. Tin, W. T. King, S. C. Huang, F. X. Gigliotti, T. M. Pollock,Directional solidification of large superalloy castings with radiation and liquid-metal cooling: A comparative assessment, Metall. Mater. Trans., 35A(10), 3221(2004)
6 C. L. Brundidge, J. D. Miller, T. M. Pollock,Development of Dendritic Structure in the Liquid Metal Cooled, Directional-Solidification Process, Metall. Mater. Trans., 42A(9), 2723(2011)
7 D. L. Anton, A. F. Giamei,Porosity distribution and growth during homogenization in single crystals of a nickel-base superalloy, Mater. Sci. Eng., 76A(1), 173(1985)
8 Y. Murakami, M. Endo,Effects of Defects, Inclusions and Inhomogeneities on fatigue-strength, Int. J. Fatigue, 16(3), 163(1994)
9 J. B. Le Graverend, J. Cormier, S. Kruch, F. Gallerneau, J. Mendez,Microstructural parameters controlling high-temperature creep life of the nickel-base single-crystal superalloy MC2, Metall. Mater. Trans., 43A(11), 3988(2012)
10 M. Lamm, R. F. Singer,The effect of casting conditions on the high-cycle fatigue properties of the single crystal nickel-base superalloy PWA 1483, Metall. Mater. Trans. A, 38A(6), 1177(2007)
11 S. Roskosz, J. Adamiec,Methodology of quantitative evaluation of porosity, dendrite arm spacing and grain size in directionally solidified blades made of CMSX-6 nickel alloy, Mater. Charact., 60(10) 1120(2009)
12 J. P. Anson, J. E. Gruzleski,The quantitative discrimination between shrinkage and gas microporosity in cast aluminum alloys using spatial data analysis, Mater. Charact., 43(5), 319(1999)
13 C. L. Brundidge, D. Vandrasek, B. Wang, T.M. Pollock,Structure refinement by a liquid metal cooling solidification process for single crystal nickel-base superalloys, Metall. Mater. Trans., 43A(3), 965(2012)
14 E. Niyama, T. Uchida, M. Morikawa, S. Saito,A method of shrinkage prediction and its application to steel casting practice, Cast. Met. J., 6(3), 16(1981)
15 J. Lecomtebeckers,Study of microporosity formation in nickel-base superalloys, Metall. Trans., 19A(9), 2341(1988)
16 H. S. Whitesell, R. A. Overfelt,Influence of solidification variables on the microstructure, macro segregation, and porosity of directionally solidified Mar-M247, Mater. Sci. Eng. A, 318(1-2), 264(2001)
17 G. K. Sigworth, C. M. Wang,Mechanisms of porosity formation during solidification- a theoretical-analysis, Metall. Trans., 24B(2), 349(1993)
18 SHI Qianying,LI Xianghui, ZHENG Yunrong, XIE Guang, ZHANG Jian, FENG Qiang, Formation of solidification and homogenisation micropores in two single crystal superalloys produced by HRS and LMC processes, Acta Metall. Sin., 48(10), 1237(2012)
18 (石倩颖, 李相辉, 郑运荣, 谢 光, 张 健, 冯 强, HRS和LMC工艺制备的两种镍基单晶高温合金铸态及固溶微孔的形成, 金属学报, 48(10), 1237(2012))
19 B. S. Bokstein, A. I. Epishin, T. Link, V. A. Esin, A. O. Rodin, I. L. Svedov,Model for the porosity growth in single-crystal nickel-base superalloys during homogenization, Scripta Mater, 57(9), 801(2007)
20 S. Roskosz, J. Adamiec,Methodology of quantitative evaluation of porosity, dendrite arm spacing and grain size in directionally solidified blades made of CMSX-6 nickel alloy, Mater. Charact., 60(10) 1120(2009)
21 T. Link, S. Zabler, A. Epishin, A. Haibel, A. Bansal,Thibault X, Synchrotron tomography of porosity in single crystal nickel-base superalloys, Mater Sci Eng A, 425(1-2), 47(2006)
22 WANG Shaogang,WANG Sucheng, ZHANG Lei, Application of High Resolution Transmission X-Ray Tomography in Material Science, Acta Metall Sin, 49(8), 897(2013)
22 王绍刚, 王苏程, 张 磊, 高分辨透射X射线三维成像在材料科学中的应用, 金属学报, 49(8), 897(2013)
23 LIU Xingang,LEI Qiang, WANG Li, QIAN Bao, LOU Langhong, Microstructural evolution of the third-generation single crystal superalloy DD33 during solution treatment, Chin. J. Mater. Res., 28(6), 407(2014)
23 刘心刚, 雷 强, 王 莉, 李相伟, 钱 宝, 楼琅洪, 第三代单晶高温合金DD33固溶处理过程中的组织演变, 材料研究学报, 28(6), 407(2014)
24 D. Emadi, J. E. Gruzleski, J. M. Toguri,The effect of Na and Sr modification on surface tension and volumetric shrinkage of A356 alloy and their influence on porosity formation, Metall. Trans., 24B(6), 1055(1993)
25 HU Hanqi, Solidification Mechanism of Metals, (Beijing, Mechanical Industry Press, 2000) p.214
25 胡汉启, 金属凝固原理, (北京, 机械工业出版社, 2000)p.214
26 J. Masison,Fluid flow and defect formation in the three-dimensional dendritic structure of nickel-based single crystals, Metall. Mater. Trans., 43A(1), 369(2012)
27 J. Campbell. Castings, (London, Reed Education and Professional Publishing Ltd, 1991)p.195
28 R. L. Coble, M. C. Flemings,Removal of pores from castings by sintering, Metall. Trans., 2(2), 409(1971)
29 H. Toda, T. Hidaka, M. Kobayashi, K. Uesugi, A. Takeuchi, K. Horikawa,Growth behavior of hydrogen micropores in aluminum alloys during high-temperature exposure, Acta Mater., 57(7), 2277(2009)
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.