Please wait a minute...
材料研究学报  2014, Vol. 28 Issue (8): 594-600    DOI: 10.11901/1005.3093.2014.134
  本期目录 | 过刊浏览 |
基于团簇结构模型的低活化铁素体/马氏体钢成分设计*
石尧,王清(),李群,董闯
大连理工大学三束材料改性教育部重点实验室 大连理工大学材料科学与工程学院 大连 116024
Composition Design of Reduced Activation Ferritic/Martensitic (RAFM) Steels Based on Cluster Structure Model
Yao SHI,Qing WANG(),Qun LI,Chuang DONG
School of Materials Science and Engineering, Key Laboratory of Materials Modification, Ministry of Education, Dalian University of Technology, Dalian 116024
引用本文:

石尧,王清,李群,董闯. 基于团簇结构模型的低活化铁素体/马氏体钢成分设计*[J]. 材料研究学报, 2014, 28(8): 594-600.
Yao SHI, Qing WANG, Qun LI, Chuang DONG. Composition Design of Reduced Activation Ferritic/Martensitic (RAFM) Steels Based on Cluster Structure Model[J]. Chinese Journal of Materials Research, 2014, 28(8): 594-600.

全文: PDF(3542 KB)   HTML
摘要: 

使用“团簇加连接原子”结构模型研究了低活化铁素体/马氏体钢的成分特征, 确定了BCC Fe-Cr二元基础团簇式[Cr-Fe14](Cr0.5Fe0.5), 其中团簇[Cr-Fe14]是以溶质原子Cr为心周围被14个基体Fe包围的菱形十二面体。根据团簇式自洽放大和相似组元替代原则, 添加V、Mn、Mo、W、Nb和C等合金元素得到2个系列团簇成分式, 无C系列[Cr16Fe224](Cr8(V, Nb, Mn, Mo, W, Fe)8)和含C系列{[Cr16Fe224](Cr8(V, Nb, Mn, Mo, W, Fe)8)}C1。使用铜模吸铸快冷技术制备直径6 mm的合金棒, 将其在1323 K保温0.5 h +水冷, 随后在1023 K保温1 h+水冷。结果表明, 无C系列置换固溶体合金为单一铁素体组织, 含C系列合金的微观组织随着合金化组元种类和含量的不同而变化; 合金的硬度随着组织的改变而改变, 且置换固溶体系列合金的硬度随着合金体电子浓度VEC/Ra3的增加而单调降低。

关键词 金属材料铁基合金低活化铁素体/马氏体钢团簇结构模型成分设计    
Abstract

The composition characteristics of reduced activation ferritic/martensitic (RAFM) steels were investigated using a cluster-plus-glue-atom model. The basic cluster formula [Cr-Fe14](Cr0.5Fe0.5) was determined, where the cluster part [Cr-Fe14] is a rhombic dodecahedron centered by Cr and surrounded by 14 Fe atoms. According to the principle related with self-consistent magnification of cluster formula and similar element substitution, two multi-component alloys were designed by adding V, Mn, Mo, W, Nb and C into [Cr-Fe14](Cr0.5Fe0.5) i.e.[Cr16Fe224](Cr8(V, Nb, Mn, Mo, W, Fe)8) and {[Cr16Fe224](Cr8(V, Nb, Mn, Mo, W, Fe)8)}C1. Alloy rods with a diameter of 6 mm were prepared by copper mould suction casting method, then normalized at 1323 K for 0.5 h and tempered at 1023 K for 1 h, both followed by water-quenching. The experimental results revealed that the substitutional solid solution alloys without C exhibit a monolithic ferrite microstructure and that of the other serial alloys with C varies with alloying elements and their contents. The microhardness (HV) of alloys changes with microstructures, and furthermore, while the HV of substitutional solid solution alloys decreases monotonously with the increase of the valence electron concentration per volume VEC/Ra3.

Key wordsmetallic materials    Fe-based alloys    reduced activation ferritic/martensitic steels    cluster structure model    composition design
收稿日期: 2014-03-24     
基金资助:* 国家自然科学基金51171035, 沈鼓基金和中央高校基本科研业务费专项资金DUT14LAB12资助项目。
图1  BCC结构中的菱形十二面体团簇, 在Fe-Cr二元体系中溶质原子Cr占据团簇心部, 周围被14个基体Fe原子占据, 形成[Cr-Fe14]团簇
Grade Composition/(mass fraction, %) Composition/(atomic fraction, %) Cluster formula
JLF-1 Fe88.62Cr9W2V0.2Ta0.08C0.1 Fe88.97Cr9.70W0.61 V0.22Ta0.02C0.47 {[Cr16Fe224] (Cr8.96Fe4.84W1.57V0.57Ta0.06)}C1.21
EUROFER97 Fe89.08Cr8.9W1.1V0.20 Ta0.14Mn0.47C0.11 Fe88.88Cr9.54W0.33V0.22 Ta0.04Mn0.48C0.51 {[Cr16Fe224] (Cr8.54Fe4.70W0.86V0.56Ta0.11 Mn1.23)}C1.31
CLAM Fe88.68Cr9.00Ta0.07V0.20 W1.5Mn0.45C0.1 Fe88.71Cr9.67Ta0.02V0.22 W0.46Mn0.46C0.47 {[Cr16Fe224] (Cr8.87Fe4.16W1.17V0.56Ta0.06 Mn1.18)}C1.21
9CrWVTa Fe88.16Cr9.00Ta0.06V0.23 W2.00Mn0.45C0.1 Fe88.49Cr9.70Ta0.02V0.25 W0.61Mn0.46C0.47 {[Cr16Fe224] (Cr8.95Fe3.60W1.57V0.65Ta0.05 Mn1.18)}C1.21
表1  典型的RAFM钢合金成分及团簇式
图2  Fe-Cr相图
No. Cluster formula Atomic fraction/% Mass fraction/% VEC Ra /nm VEC/Ra3 /nm-3 Micro -structure Micro -hardness HV
1# [Cr16Fe224](Cr8Fe8) Fe90.63Cr9.375 Fe91.21Cr8.79 7.81 0.1271 3805.55 F 87
2# [Cr16Fe224] (Cr8V1Mn1W2Fe4) Fe89.06Cr9.375V0.39 W0.78Mn0.39 Fe88.09Cr8.63V0.35 W2.54Mn0.38 7.78 0.1272 3778.12 F 117
3# [Cr16Fe224] (Cr8V1Mn1Mo4W2) Fe87.5Cr9.375Mo1.56 V0.39W0.78Mn0.39 Fe85.59Cr8.54Mo2.6 V0.35W2.52Mn0.38 7.75 0.1274 3744.98 F 149
4# [Cr16Fe224](Cr8V0.5Nb0.5 Mn1Mo4W2) Fe87.5Cr9.375Nb0.20Mo1.56 V0.20W0.78Mn0.39 Fe85.47Cr8.52Nb0.32Mo2.62 V0.17W2.51Mn0.37 7.75 0.1275 3742.91 F 163
5# [Cr16Fe224] (Cr8V1Mn1Mo3Fe3) Fe88.67Cr9.375Mo1.17 V0.39Mn0.39 Fe88.53Cr8.72Mo2.01 V0.36Mn0.38 7.75 0.1273 3770.51 F 125
6# [Cr16Fe224] (Cr8V1Mn1Mo6) Fe87.5Cr9.375Mo2.34 V0.39Mn0.39 Fe86.64Cr8.64Mo3.99 V0.35Mn0.38 7.77 0.1274 3745.67 F 137
7# {[Cr16Fe224](Cr8Fe8)}C1 Fe90.27Cr9.34C0.39 Fe91.14Cr8.78C0.08 7.80 0.1270 3810.59 M 165
8# {[Cr16Fe224] (Cr8V1Mn1W2Fe4)}C1 Fe88.76Cr9.34V0.39W0.78 Mn0.39 C0.39 Fe88.02Cr8.63V0.35W2.54 Mn0.38 C0.08 7.77 0.1271 3783.19 M 199
9# {[Cr16Fe224] (Cr8V1Mn1Mo4W2)}C1 Fe87.16Cr9.34Mo1.56V0.39 W0.78Mn0.39 C0.39 Fe85.52Cr8.53Mo2.62V0.35 W2.51Mn0.38 C0.08 7.74 0.1273 3750.09 F+M 180
10# {[Cr16Fe224](Cr8V0.5Nb0.5Mn1Mo4 W2)}C1 Fe87.16Cr9.34Nb0.19Mo1.56 V0.19W0.78Mn0.39 C0.39 Fe85.40Cr8.62Nb0.32Mo2.62 V0.17W2.51Mn0.38 C0.08 7.74 0.1273 3748.03 F 169
11# {[Cr16Fe224] (Cr8V1Mn1Mo3Fe3)}C1 Fe88.33Cr9.34Mo1.16V0.39 Mn0.39 C0.39 Fe88.46Cr8.71Mo2.01V0.36 Mn0.38 C0.08 7.76 0.1271 3775.59 F+M 175
12# {[Cr16Fe224] (Cr8V1Mn1Mo6)}C1 Fe87.16Cr9.34Mo2.33V0.39 Mn0.39 C0.39 Fe86.56Cr8.64Mo3.98V0.35 Mn0.38 C0.08 7.74 0.1273 3750.78 F 160
表2  设计合金的成分、显微组织及硬度
图3  [Cr16Fe224](Cr8(V, Nb, Mn, Mo, W, Fe)8) (a)和{[Cr16Fe224](Cr8(V, Nb, Mn, Mo, W, Fe)8)}C1 (b)系列合金热处理后的XRD谱
图4  系列合金热处理后的组织
Fe Cr Mo Mn W V Nb C
Valence electron VEC 8 6 6 7 6 5 5 4
Atomic radius R/nm 0.127 0.128 0.140 0.126 0.141 0.135 0.147 0.092
表3  设计合金成分中的每种元素的价电子数和原子半径
图5  系列合金的硬度随着体电子浓度VEC/Ra3的变化
1 E. E. Bloom, S. J. Zinkle, F.W. Wiffen,Materials to deliver the promise of fusion power – progress and challenges, Journal of Nuclear Materials, 329, 12(2004)
2 A. Kohyama, A. Hishinuma, D. S. Gelles, R.L. Klueh, W. Dietz, K. Ehrlich,Low-activation ferritic and martensitic steels for fusion application, Journal of Nuclear Materials, 233, 138(1996)
3 K. Ehrlich, S. W. Cierjacks, S. Kelzenberg, A. M?slang, The Development of Structural Materials for Reduced Long-Term Activation (ASTM Special Technical Publications, STP 1270, 1996)p.1109
4 R. L. Klueh, D. S. Gelles, S. Jitsukawa, A. Kimura, G. R. Odette, B. van der Schaaf, M. Victoria,Ferritic/martensitic steels–overview of recent results, Journal of Nuclear Materials, 307, 455(2002)
5 R. L. Klueh, M. A. Sokolov. Mechanical properties of irradiated 9Cr–2WVTa steel with without nickel,9Cr–2WVTa steel with and without nickel, Journal of Nuclear Materials, 367, 102(2007)
6 R. Lindau, A. M?slang, M. Rieth, M. Klimiankou, E. Materna-Morris, A. Alamo, A.-A. F. Tavassoli, C. Cayron, A.-M. Lancha, P. Fernandez, N. Baluc, R. Sch?ublin, E. Diegele, G. Filacchioni, J.W. Rensman, B.v.d. Schaaf, E. Lucon, W. Dietz,Present development status of EUROFER and ODS-EUROFER for application in blanket concepts, Fusion Engineering and Design, 75, 989(2005)
7 HUANG Qunying,YU Jinnan, WAN Farong, LI Jiangang, WU Yican, The development of low activation martensitic steels for fusion reactor, Chinese Journal of Nuclear Science and Engineering, 24, 56(2004)
7 (黄群英, 郁金南, 万发荣, 李建刚, 吴宜灿, 聚变堆低活化马氏体钢的发展, 核科学与工程, 24, 56(2004))
8 Q. Huang, C. Li, Y. Li, M. Chen, M. Zhang, L. Peng, Z. Zhu, Y. Song, S. Gao,Progress in development of China Low Activation Martensitic steel for fusion application, Journal of Nuclear Materials, 367, 142(2007)
9 A. L. Schaeffler,Constitution diagram for stainless steel weld metal, Metal Progress, 56(11), 680(1949)
10 R. L. Klueh, N. Hashimoto, P. J. Maziasz,Nano scale nitride particle strengthened high temperature wrought ferritic and martensitic steels, United States Patent US7520942 B2(2009)
11 C. Dong, Q. Wang, J. B. Qiang, Y. M. Wang, N. Jiang, G. Han, Y. H. Li, J. WuJ. H. Xia,From clusters to phase diagrams: composition rules of quasicrystals and bulk metallic glasses, Journal of Physics D: Applied Physics, 40(15), R273(2007)
12 HAO Chuanpu,WANG Qing, MA Rentao, WANG Yingmin, QIANG Jianbing, DONG Chuang, Cluster-plus-glue-atom model in bcc solid solution alloys, Acta Physica Sinica, 60(11), 116101-1(2011)
12 (郝传璞, 王 清, 马仁涛, 王英敏, 羌建兵, 董 闯, 体心立方固溶体合金中的“团簇+连接原子”结构模型, 物理学报, 60(11), 116101-1(2011))
13 Q. Wang, C. J. Ji, Y. M. Wang, J. B. Qiang, C. Dong,β-Ti alloys with low Young’s moduli interpreted by cluster-plus-glue-atom model, Metallurgical and Materials Transactions A, 44(4), 1872(2013)
14 MA Rentao,HAO Chuanpu, WANG Qing, REN Mingfa, WANG Yingmin, DONG Chuang, Cluster-plus-glue-atom model and composition design of BCC Ti-Mo-Nb-Zr solid solution alloys with low young’s modulus, Acta. Metall. Sin., 46, 1034(2010)
14 (马仁涛, 郝传璞, 王 清, 任明法, 王英敏, 董 闯, 低弹bcc结构Ti-Mo-Nb-Zr固溶体合金的“团簇+连接原子”模型及其成分设计, 金属学报, 46, 1034(2010))
15 WANG Qing,GUO Xiaolei, ZHANG Ruiqian, WANG Yingmin, DONG Chuang, JI Chunjun, Composition design of high-strength ferritic aging stainless steels, Transactions of materials and heat treatment, 35, 72(2014)
15 (王 清, 郭晓雷, 张瑞谦, 王英敏, 董 闯, 冀春俊, 高强铁素体时效不锈钢成分设计, 材料热处理学报, 35, 72(2014))
16 A. Takeuchi, A. Inoue,Calculations of mixing enthalpy and mismatch entropy for ternary amorphous alloys, Materials Transactions JIM, 41, 1372(2000)
17 Zhurnal Prikladnoi Khimii,Professor Gustav Tammann (to 140th Birthday Anniversary), Russian Journal of Applied Chemistry, 74, 1610(2001)
18 A. L. Greer,Metallic glasses, Science, 267, 1947(1995)
19 G. Shiflet,The more elements, the merrier, Science, 300, 443(2003)
20 WANG Qing,ZHA Qianfeng, LIU Enxue, DONG Chuang, WANG Xuejun, TAN Chaoxin, JI Chunjun, Composition design of high-strength martenstic precipitation hardening stainless steels based on a cluster model, acta metallurgica sinica, 48(10), 1201(2012)
20 (王 清, 查钱锋, 刘恩雪, 董 闯, 王学军, 谭朝鑫, 冀春俊, 基于团簇模型的高强度马氏体沉淀硬化不锈钢成分设计, 金属学报, 48(10), 1201(2012))
21 J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau, S. Y. Chang,Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Adv. Eng. Mater., 6, 299(2004)
22 S. Jitsukawa, M. Tamura, B. van der Schaaf, R. L Klueh, A. Alamo, C. Petersen, M. Schirra, P. Spaetig, G. R Odette, A. A Tavassoli, K. Shiba, A. Kohyama, A. Kimura,Development of an extensive database of mechanical and physical properties for reduced-activation martensitic steel F82H, Journal of Nuclear Materials, 307, 179(2002)
23 Ermile Gaganidze,Jarir Aktaa, Assessment of neutron irradiation effects on RAFM steels, Fusion Engineering and Design, 88, 118(2003)
24 C. H. Shek, Y. M. WangC. Dong,The e/a-constant Hume–Rothery phases in an As-cast Zr65Al7.5Ni10Cu17.5 alloy, Mater. Sci. Eng. A, 291, 78(2000)
25 W. R. Chen, Y. M. Wang, J. B. Qiang, C. Dong,Bulk metallic glasses in the Zr-Al-Ni-Cu system, Acta Mater, 51, 1899(2003)
26 Sheng Guo,Chun Ng, Jian Lu, and C. T. Liu, Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys, J. Appl. Phys., 109, 103505(2011)
27 ZHAO Xiancun, SONG Weishun, YANG Zhiyong, LIANG Jianhui, LI Zhihui, High Strength Super High Strength Stainless Steels (Beijing, The Press of Metallurgy Industry, 2008) p.394-396
27 ( p.394-396)
28 K. Ishida,Calculation of the effect of alloying elements on the Ms temperature in steels, Journal of Alloys and Compounds, 220(1), 126(1995)
29 K. Yvon, A. Paoli,Charge transfer and valence electron concentration in Chevrel phases, Solid State Communications, 24(1), 41(1977)
30 R. Ma, Y. Yang, Q. Yan, Y. Yang, X. Li, C. Ge,Metallurgical characterization of Ti-bearing 9Cr low activation martensitic steel, Acta Metall. Sin. (Eng. Lett.), 24(1), 9(2011)
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.