Please wait a minute...
材料研究学报  2014, Vol. 28 Issue (11): 873-880    DOI: 10.11901/1005.3093.2014.114
  本期目录 | 过刊浏览 |
纳米晶-非晶Mg2Ni型合金的贮氢动力学
张羊换1,2(),袁泽明2,翟亭亭2,杨泰2,张国芳1,赵栋梁2
1. 内蒙古科技大学 内蒙古自治区白云鄂博矿多金属资源综合利用重点实验室 包头 014010
2. 钢铁研究总院功能材料研究所 北京 100081
Hydrogen Storage Kinetics of Nanocrystalline and Amorphous Mg2Ni-type Alloys
Yanghuan ZHANG1,2,**(),Zeming YUAN2,Tingting ZHAI2,Tai YANG2,Guofang ZHANG1,Dongliang ZHAO2
1. Key Laboratory of Integrated Exploitation of Baiyun Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Baotou 014010
2. Department of Functional Material Research, Central Iron and Steel Research Institute, Beijing 100081
引用本文:

张羊换,袁泽明,翟亭亭,杨泰,张国芳,赵栋梁. 纳米晶-非晶Mg2Ni型合金的贮氢动力学[J]. 材料研究学报, 2014, 28(11): 873-880.
Yanghuan ZHANG, Zeming YUAN, Tingting ZHAI, Tai YANG, Guofang ZHANG, Dongliang ZHAO. Hydrogen Storage Kinetics of Nanocrystalline and Amorphous Mg2Ni-type Alloys[J]. Chinese Journal of Materials Research, 2014, 28(11): 873-880.

全文: PDF(4114 KB)   HTML
摘要: 

在合金中添加Cu及Nd, 用真空快淬技术制备纳米晶-非晶Mg2Ni型(Mg24Ni10Cu2)100-xNdx (x = 0, 5, 10, 15, 20)合金, 研究了淬速及Nd含量对合金结构及贮氢动力学性能的影响。XRD及TEM分析结果表明, 铸态合金具有多相结构, 包括主相Mg2Ni和第二相Nd5Mg41、Mg6Ni和 NdNi。快淬无Nd合金具有完全的纳米晶结构, 而含Nd合金则具有纳米晶-非晶结构, 表明添加Nd提高了合金的非晶形成能力。贮氢动力学测试结果表明, 快淬和添加Nd显著提高了合金的气态及电化学贮氢动力学。合金的高倍率放电能力(HRD)随着淬速和Nd含量的增加先增加而后减小, 这主要归因于快淬及添加Nd显著提高了合金的氢扩散系数(D)和极限电流密度(IL), 同时增大了电荷转移阻抗(Rct)。

关键词 金属材料Mg2Ni型合金快淬添加Nd贮氢动力学    
Abstract

A series (Mg24Ni10Cu2)100-xNdx (x = 0, 5, 10, 15, 20) alloys with a microstructure of nanocrystalline and amorphous structure were prepared by melt spinning technology. The effect of spinning rate and Nd content on the microstructure and the hydrogen storage performance of the alloys was investigated. The results of XRD and TEM examination reveal that all the as-cast alloys exhibit a multiphase microstructure, i.e. Mg2Ni-type phase is the major component and there exist several secondary phases such as Mg6Ni, Nd5Mg41 and NdNi. Furthermore, the as-spun Nd-free alloy shows a microstructure of entire nanocrystallines, whereas the as-spun alloys with Nd addition exhibit a microstructure of nanocrystalline and amorphous structure, meaning that the addition of Nd facilitates the glass forming of the alloys. The measurement of the hydrogen storage kinetics indicates that the melt spinning and the Nd addition can significantly improve the hydrogen storage performance of the alloys either in gaseous atmosphere or by electrochemically charging, and with the increasing spin rate and the amount of Nd addition, the high rate discharge capability (HRD) of the alloys increases firstly and then declines, for which the enhanced hydrogen diffusion coefficient (D) and limiting current density (IL) and the increased charge transfer resistance (Rct) resulted from both the melt spinning and the Nd addition are possibly responsible.

Key wordsmetallic materials    Mg2Ni-type alloy    melt spinning    Nd addition    hydrogen storage kinetics
收稿日期: 2014-03-10     
基金资助:* 国家自然科学基金51161015, 51371094和内蒙古自治区自然科学基金重大项目2011ZD10资助。
图1  铸态及快淬态(Mg24Ni10Cu2)100-xNdx (x = 0-20)合金的XRD谱
图2  快淬态(Mg24Ni10Cu2)100-xNdx (x = 0-20)合金的TEM形貌及电子衍射环(ED)
图3  快淬态(Mg24Ni10Cu2)100-xNdx (x = 0-20)合金的DSC曲线
图4  铸态及快淬态(Mg24Ni10Cu2)100-xNdx (x = 0-20)合金的R5a 、C100a 值与淬速及Nd含量的关系
图5  铸态及快淬态(Mg24Ni10Cu2)100-xNdx (x = 0-20)合金的R10d 、C10d 值与淬速及Nd含量的关系
图6  铸态及快淬态(Mg24Ni10Cu2)100-xNdx (x = 0-20)合金的高倍率放电能力
图7  在50%(DOD)放电深度下(Mg24Ni10Cu2)100-xNdx (x = 0-20)合金的交流阻抗谱
图8  铸态及快淬态(Mg24Ni10Cu2)100-xNdx (x = 0-20)合金的阳极电流与时间相应曲线
图9  在50%放电深度下铸态及快淬态(Mg24Ni10Cu2)100-xNdx (x = 0-20)合金的Tafel极化曲线
1 Q. Dong, W. Q. Tian,D-L. Chen, C-C. Sun, The potential of transition metal–methylidynes ashigh-capacity hydrogen storage media, Int. J. hydrogen energy, 34(13), 5444(2009)
2 A. Ebrahimi-Porkani, S. F. Kashani-Bozorg,Nanocrystalline Mg2Ni-based powders produced by high-energy ball milling and subsequent annealing, J. Alloys Compd, 456(1–2), 211(2008)
3 T. Spassov, L. Lyubenova, U. K?ster, M. D. Baró,Mg–Ni–RE nanocrystalline alloys for hydrogen storage, Mater. Sci. Eng. A, 375, 794(2004)
4 J. H. Woo, K. S. Lee,Electrode characteristics of nanostructured Mg2Ni-Type alloys prepared by mechanical alloying, J. Electrochem. Soc, 146(3), 819(1999)
5 Y. H. Zhang, C. Zhao, T. Yang, H. W. Shang, C. Xu, D. L. Zhao,Comparative study of electrochemical performances of the as-melt Mg20Ni10-xMx (M=None, Cu, Co, Mn; x=0, 4) alloys applied to Ni/metal hydride (MH) battery, J. Alloys Compd, 555, 131(2013)
6 H. Gu, Y. F. Zhu, L. Q. Li,Hydrogen storage properties of Mg–Ni–Cu prepared by hydriding combustion synthesis and mechanical milling (HCS+MM), Int. J. hydrogen energy, 34(6), 2654(2009)
7 B. Sakintuna, F. Lamari-Darkrimb, M. Hirscher,Metal hydride materials for solid hydrogen storage: Areview, Int. J. hydrogen energy, 32(9), 1121(2007)
8 J-C. Crivello, T. Nobuki, T. Kuji,Improvement of Mg–Al alloys for hydrogen storage applications, Int. J. hydrogen energy, 34(4), 1937(2009)
9 M. Y. Song, S. N. Kwon, J. S. Bae,S.H .Hong,Hydrogenstorage properties of Mg–23.5Ni–(0 and 5)Cu prepared by melt spinning and crystallization heat treatment, Int. J. Hydrogen Energy, 33(6), 1711(2008)
10 L. Hima-Kumar, B. Viswanathan, S. Srinivasa-Murthy,Hydrogen absorption by Mg2Ni prepared by polyol reduction, J. Alloys Compd, 461(1-2), 72(2008)
11 G. Y. Liang, D. C. Wu, L. Li, L. J. Huang,A discussion on decay of discharge capacity for amorphous Mg–Ni–Nd hydrogen storage alloy, J. Power Sources, 186(2), 528(2009)
12 S. Todorova, T. Spassov,Mg6Ni formation in rapidly quenched amorphous Mg–Ni alloys, J. Alloys Compd, 469(1-2), 193(2009)
13 H. P. Ren, Y. H. Zhang, B. W. Li, D. L. Zhao, S. H. Guo, X. L. Wang,Influence of the substitution of La for Mg on the microstructure and hydrogen storage characteristics of Mg20-xLaxNi10 (x = 0-6) alloys, Int. J. hydrogen energy, 34(3), 1429(2009)
14 G. K. Williamson, W. H. Hall,X-ray line broadening from filed aluminium and wolfram,?Acta Metall, 1(1), 22(1953)
15 Y. Wu, W. Han, S. X. Zhou, M. V. Lototsky, J. K. Solberg, V. A. Yartys,Microstructure and hydrogenation behavior of ball-milled and melt-spun Mg-10Ni-2Mm alloys, J. Alloys Compd, 466(1-2), 176(2008)
16 S. Orimo, H. Fujii,Materials science of Mg-Ni-based new hydrides, Appl. Phys. A, 72(2), 167(2001)
17 T. Spassov, U. K?ster,Thermal stability and hydriding properties of nanocrystalline melt-spun Mg63Ni30Y7 alloy, J. Alloys Compd, 279(2), 279(1998)
18 L. Zaluski, A. Zaluska, J. O. Str?m-Olsen,Nanocrystalline metal hydrides, J. Alloys Compd, 253, 70(1997)
19 A. Gasiorowski, W. Iwasieczko, D. Skoryna, H. Drulis, M. Jurczyk,Hydriding properties of nanocrystalline Mg2-xMxNi alloys synthesized by mechanical alloying (M = Mn, Al), J. Alloys Compd, 364(1-2), 283(2004)
20 N. Kuriyama, T. Sakai, H. Miyamura, I. Uehara, H. Ishikawa, T. Iwasaki,Electrochemical impedance and deterioration behavior of metal hydride electrodes, J. Alloys Compd, 202(1-2), 183(1993)
21 J. Kleperis, G. Wójcik, A. Czerwinski, J. Skowronski, M. Kopczyk, M. Beltowska-Brzezinska,Electrochemical behavior of metal hydrides, J. Solid State Electrochem, 5(4), 229(2001)
22 G. Zheng, B. N. Popov, R. E. White,Electrochemical Determination of the Diffusion Coefficient of Hydrogen Through an LaNi4.25Al0.75 Electrode in Alkaline Aqueous Solution, J. Electrochem. Soc, 142(8), 2695(1995)
23 B. V. Ratnakumar, C. Witham, R. C. Bowman-Jr, A. Hightower, B. Fultz,Electrochemical Studies on LaNi5-xSnx?Metal Hydride Alloys, J. Electrochem Soc., 143(8), 2578(1996)
24 X. Y. Zhao, Y. Ding, L. Q. Ma, L. Y. Wang, M. Yang, X. D. Shen,Electrochemical properties of MmNi3.8Co0.75Mn0.4Al0.2?hydrogen storage alloy modified with nanocrystalline nickel, Int. J. Hydrogen Energy, 33(22), 6727(2008)
25 X. Y. Zhao, Y. Ding, M. Yang, L. Q. Ma,Effect of surface treatment on electrochemical properties of MmNi3.8Co0.75Mn0.4Al0.2 hydrogen storage alloy, Int. J. Hydrogen Energy, 33(1), 81(2008)
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.