Please wait a minute...
材料研究学报  2014, Vol. 28 Issue (7): 535-540    DOI: 10.11901/1005.3093.2014.012
  本期目录 | 过刊浏览 |
一种镍基单晶高温合金的低周疲劳拉-压不对称性行为*
范志东1,2,王栋1(),楼琅洪1
1. 中国科学院金属研究所 沈阳 110016
2. 中国科学院大学 北京 100049
Tension-Compression Asymmetry of Single Crystal Superalloy DD10 under Low Cycle Fatigue Deformation
Zhidong FAN1,2,Dong WANG1,**(),Langhong LOU1
1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2. University of Chinese Academy of Sciences, Beijing 100049
引用本文:

范志东,王栋,楼琅洪. 一种镍基单晶高温合金的低周疲劳拉-压不对称性行为*[J]. 材料研究学报, 2014, 28(7): 535-540.
Zhidong FAN, Dong WANG, Langhong LOU. Tension-Compression Asymmetry of Single Crystal Superalloy DD10 under Low Cycle Fatigue Deformation[J]. Chinese Journal of Materials Research, 2014, 28(7): 535-540.

全文: PDF(0 KB)   HTML
摘要: 

研究了镍基单晶高温合金DD10在760℃和980℃条件下低周疲劳过程中的拉-压不对称性行为, 并对其机制进行了深入探讨。结果表明, 在疲劳试验初期, 当应变幅较低时, 在两种温度条件下拉-压不对称性都不明显, 且拉力略大于压力; 随着循环周次或应变幅的增加合金的拉-压不对称性逐渐明显, 在760℃时拉力明显大于压力, 而在980℃时拉力却明显小于压力。循环初期的拉-压不对称性行为与基体应力状态有关, 而在大应变幅下和循环应力稳定阶段拉-压不对称性的正负属性和程度与位错在不同温度拉伸和压缩过程中克服γ′ 粒子的运动方式不同有关。

关键词 金属材料单晶高温合金低周疲劳拉压不对称性位错形貌    
Abstract

The main objective of the present research aims at investigating effects of the cyclic number, temperature and strain amplitude on the tension-compression asymmetry behavior of single crystal (SX) superalloy DD10. Fully reversed LCF tests with Rε=-1 are conducted at 760℃ and 980℃ under various strain ranges, and some tests are interrupted after the 1st cycle and at the cyclic stress saturation stage to figure out the evolution of the tension-compression asymmetry and the dislocation configurations. Results show that this asymmetry behavior is affected by several factors, such as the stress field in matrix, temperature and the strain range, and these factors depict various effects in different parts of the LCF process. In the 1st cycle, the K value (the ratio of st to sc) is slightly above 1 in low strain range for both temperatures, due to the compress in matrix resulted from the negative lattice mismatch. With the increment of strain amplitude or cyclic number, the tension-compression asymmetry gets much severer: at 760℃ the K is above 1, whereas at 980℃ K is below 1. TEM observations reveal that this distinct asymmetry behavior arises mainly from the different motion modes of dislocations in γ′ phase, e.g. perfect dislocations at 760℃ and stacking fault at 980°C.

Key wordsmetallic materials    single crystal superalloy    low cycle fatigue    asymmetry    dislocations
收稿日期: 2014-01-12     
基金资助:* 国家重点基础研究发展计划项目2012AA03A513, 国家自然科学基金项目51101160和51171193资助。
图1  DD10合金标准热处理后的组织
图2  DD10合金的循环应力响应曲线
图3  DD10合金低周疲劳不同阶段的拉-压不对称性
图4  循环第一周次后DD10合金的位错形貌
图5  DD10合金基体通道内的应力状态示意图
图6  循环应力稳定阶段的位错形貌
1 R. C. Reed, The Superalloys Fundamentals and Applications, (New York, Cambridge University Press, 2006) p.153
2 C. Lall, S. Chin, D.P. Pope,The orientation and temperature dependence of the yield stress of Ni3(Al, Nb) single crystals, Metallurgical and Materials Transactions A, 10A, 1323(1979)
3 U. L. a. E. N. A. Nitz,CRSS anisotropy and tension-compression asymmetry of a commercial superalloy, Acta Materialia, 46, 4769(1998)
4 Li Ying,Su Bin, Abnormal yield behavior and deformation mechanism of nickel base single crystal superalloy, Journal of Materials Engineering, (3), 45(2004)
4 (李 影, 苏 彬, 镍基单晶高温合金的反常屈服行为与变形机制, 材料工程, (3), 45(2004)
5 T. P. Gabb, J. Gyda,Orientation and temperature dependence of some mechanical properties of the single-crystal nickel-base superalloy Part II. LCF, Metallurgical and Materials Transactions A, 17A 497(1984)
6 F. Jiao, D. Bettge, W. Osterle, J. Ziebs,Tension-compression asymmetry of the (001) single crystal nickel base superalloy SC16 under cyclic loading at elevated temperatures, Acta Materialia, 44(10), 3933(1996)
7 Y. Zhufeng, T. Xiande, Y. Zeyong, L. Haiyan,A crystallographic model for the orientation dependence of low cyclic fatigue property of a nickel-base single crystal superalloy, Applied Mathematics and Mechanics, 21(4), 415(2000)
8 M. Yamashita, K. Kakehi,Tension/compression asymmetry in yield and creep strengths of Ni-based superalloy with a high amount of tantalum, Scripta Materialia, 55(2), 139(2006)
9 D. Leidermark, J.J. Moverare, S. Johansson, K. Simonsson, S. Sj?str?m,Tension/compression asymmetry of a single-crystal superalloy in virgin and degraded condition, Acta Materialia, 58(15), 4986(2010)
10 B. H. Kear,Role of two-dislocation boundaries in the plastic deformation of FCC crystals, AIME Transactions, 224, 674(1962)
11 LI Ying,SU Bin, Cyclic deformation of single crystal nickel base superalloy DD6 at 760℃, Journal of Materials Engineering, (5), 1(2002)
11 (李 影, 苏 彬, 760℃下DD6单晶高温合金的循环形变, 材料工程, (5), 1(2002))
12 X. F. Ma, H. J. Shi, J. L. Gu, Z. X. Wang, H. Harders, T. Malow,Temperature effect on low-cycle fatigue behavior of nickel-based single crystalline superalloy, Acta Mech Solida Sin, 21(4), 289(2008)
13 V. Brien, B. Decamps,Low cycle fatigue of a nickel based superalloy at high temperature: deformation microstructures, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Proc., 316(1-2), 18(2001)
14 Y. D. Wang, E. D. Wu, S. C. Wang, W. H. Li,X-ray diffraction analysis on the thickness effect of γ/γ′ lattice mismatche in nickel base single crystal superalloy DD10, Acta Metall. Sin., 47(11), 1418(2011)
15 C. Liu, J. Shen, J. Zhang,Effect of withdrawal rates on microstructure and creep strength of a single crystal superalloy processed by LMC, J. Mater. Sci. Technol., 26, 306(2010)
16 M. G. Wang, S. G. Tian, X. F. Yu, B. J. Qian,Influences of element Re and temperatures on the lattice parameter and misfit of single-crystal nickel-based superalloys, Rare Metal Mat. Eng., 39(2), 268(2010)
17 F. Diologent, P. Caron, T. d'Almeida, S. Chambreland, A. Jacques, P. Bastie,Temperature dependence of lattice mismatch and γ′ volume fraction of a fourth-generation monocrystalline nickel-based superalloy, Int. J. Mater. Res., 97(8), 1136(2006)
18 Z. Chu, Y. Jinjiang, S. Xiaofeng, G. Hengrong, H. Zhuangqi,High temperature low cycle fatigue behavior of a directionally solidified Ni-base superalloy DZ951, Materials Science and Engineering: A, 488(1-2), 389(2008)
19 H. C. Yu, Y. Li, X. R. Wu, X. G. Yang, D. Q. Shi,Isothermal LCF fatigue behaviors of a single crystal nickel base superalloy at high temperatures, Fracture Mech. Symp., 4, 57(2006)
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.