Please wait a minute...
材料研究学报  2014, Vol. 28 Issue (3): 211-219    DOI: 10.11901/1005.3093.2013.841
  本期目录 | 过刊浏览 |
GH4169合金Delta工艺中的变形行为和微观组织演变*
张海燕1(),张士宏2,程明2,赵忠1
1. 宁波工程学院机械工程学院 宁波 315016
2. 中国科学院金属研究所 沈阳 110016
Deformation Behavior and Microstructure Evolution of GH4169 Alloy during the Delta Process
Haiyan ZHANG1,**(),Shihong ZHANG2,Ming CHENG2,Zhong ZHAO1
1. School of Mechanical Engineering, Ningbo University of Technology, Ningbo 315016
2. Institude of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

张海燕,张士宏,程明,赵忠. GH4169合金Delta工艺中的变形行为和微观组织演变*[J]. 材料研究学报, 2014, 28(3): 211-219.
Haiyan ZHANG, Shihong ZHANG, Ming CHENG, Zhong ZHAO. Deformation Behavior and Microstructure Evolution of GH4169 Alloy during the Delta Process[J]. Chinese Journal of Materials Research, 2014, 28(3): 211-219.

全文: PDF(3002 KB)   HTML
摘要: 

在950-1010℃用GH4169合金的Delta工艺进行应变速率为0.005-0.1 s-1的等温恒应变速率压缩实验, 系统研究了δ相对合金热变形行为和微观组织演变的影响。结果表明: 初始δ相含量分别为0、3.65%和8.14%的GH4169合金的真应力–真应变曲线均为具有单峰特征的曲线, 其本构方程均满足双曲正弦函数, 变形激活能分别为441.3、445.8和487.7 kJ/mol; 3种合金在热变形过程中的主要软化机制均为动态再结晶; 在相同变形条件下, 随着δ相含量的增加, 动态再结晶临界应变显著降低, 再结晶晶粒尺寸减小, 再结晶体积分数增大; 其中固溶态合金的再结晶形核方式主要为基体γ相的晶界弓弯形核, 而预析出δ相的合金中δ相与基体γ相的相界也是再结晶形核的有利位置。由此可见, δ相的存在能促进动态再结晶的发生。

关键词 金属材料GH4169合金Delta工艺δ变形行为微观组织    
Abstract

For the delta process (DP) of GH4169 high temperature alloy, the effect of d phase content on its hot deformation behavior and evolution of microstructures was studied systematically by isothermal compression test with a strain rate range 0.005-0.1 s-1 at temperature range 950-1010℃. The results indicated that the true stress–true strain curves for GH4169 alloys with different initial d phase contents of 0, 3.65% and 8.14% may be characterized with the feature of single peak curves, and the constitutive equation could be all expressed by a hyperbolic-sine Arrhenius-type equation. The corresponding activation energies of deformation were 441.3, 445.8 and 487.7 kJ/mol, respectively. The main soft mechanisms for GH4169 alloys with different initial d phase contents during hot working were all dynamic recrystallization (DRX). As the increase of δ phase content, the critical strain and grain size of DRX decreased, and the fraction of DRX increased. The DRX nucleation for the solution treated alloy might mainly rely on the bulging of original grain boundaries, while the boundaries between the d phase and matrix were the nucleation sites for DRX in the pre-precipitated GH4169 alloys. Thus, the existence of d phase can stimulate the occurrence of DRX.

Key wordsmetallic materials    GH4169 alloy    delta process    δ phase    deformation behavior    microstructure
收稿日期: 2013-11-11     
基金资助:* 浙江省自然科学基金LQ12E05001 和宁波市自然科学基金2011A610157 资助项目。
作者简介:

本文联系人: 张海燕

图1  不同样品热压缩实验的微观组织
图2  变形温度为950℃时3种合金在不同应变速率下的真应力–真应变曲线
图3  不同合金热压缩变形时的ln[sinh(ασp)]与1/T之间的关系曲线
图4  3种合金在不同变形条件下变形后的微观组织
图5  3种合金在不同变形条件下的峰值应变
图6  3种合金在不同变形条件下的动态再结晶晶粒尺寸
图7  3 种合金在不同变形条件下的动态再结晶体积分数
图8  3种合金热变形中lnε0.5与lnZ, ln(-ln(1-X)/0.693)与ln((ε-εc)/ε0.5)的关系曲线
Alloy No. δ phase content /% Critical strain Recrystallized grain size/m Recrystallization fraction
1# 0 ε c = 0.83 ε p
ε p = 4.2 × 10 - 3 Z 0.0990
d= 1.2758 × 10 5 Z - 0.2609 ε 0.5 = 1.3689 × 10 - 4 Z 0.2296
X= 1 - e x p ( - 0.693 × ( ε- ε c ε 0.5 ) 1.69 )
2# 3.65 ε c = 0.83 ε p
ε p = 9.12 × 10 - 3 Z 0.0697
d= 1.5628 × 10 5 Z - 0.2654 ε 0.5 = 8.1051 × 10 - 4 Z 0.1778
X= 1 - e x p ( - 0.693 × ( ε- ε c ε 0.5 ) 2.05 )
3# 8.14 ε c = 0.83 ε p
ε p = 5.899 × 10 - 5 Z 0.1711
d= 3.9796 × 10 5 Z - 0.2649 ε 0.5 = 5.37 × 10 - 3 Z 0.1135
X= 1 - e x p ( - 0.693 × ( ε- ε c ε 0.5 ) 2.43 )
表1  GH4169合金的3种动态再结晶模型
1 M. Sundararaman, P. Mukhopadhyay, S. Banerjee,Precipation of the δ-Ni3Nb phase in two nickel base superalloys, Metallurgical and Materials Transactions A, 19, 453(1988)
2 J. P. Collier, S. H. Wong, J. C. Phillips, J. K. Tien,The effect of varying Al, Ti, and Nb content on the phase stability of Inconel 718, Metallurgical and Materials Transactions A, 19, 1657(1988)
3 Y. Hiroaki, H. Takeshi, H. Tomohisa, I. Sachihiro, S. Hideaki,Process modeling of IN718 for free forging, in: Proceedings of the 9th International Conference on Numerical Methods in Industrial Processses, edited by J. M. A. César, A. D. Santos (Porto, Portugal, 2007) p. 987
4 C. Ruiz, A. Obabueki, K. Gillespie, Evaluation of the microstructure and mechanical properties of delta processed alloy 718, in: Superalloys 1992, edited by S. D. Antolovich, R. W. Stusrud, R. A. MacKay, D. L. Anton, T. Khan, R. D. Kissinger, D. L. Klarstrom (Warrendale, PA, TMS, 1992) p.33
5 T. Banik, S. O. Mancuso, G. E. Maurer, An evaluation of the forgeability of delta processed Udimet alloy 718DP, in: Superalloys 718, 625, 706 and Various Derivatives, edited by E. A. Loria (Warrendale, PA, TMS, 1994) p.273
6 A. W. Dix, J. M. Hyzak, R. P. Singh, Application of ultra fine grain alloy 718 forging billet, in: Superalloys 1992, edited by S. D. Antolovich, R. W. Stusrud, R. A. MacKay, D. L. Anton, T. Khan, R. D. Kissinger, D. L. Klarstrom (Warrendale, PA, TMS, 1992) p.23
7 P. R. Bhowal, J. J. Schirra, Full scale Gatorizing? of fine grain Inconel 718, in: Superalloys 718, 625, 706 and Various Derivatives, edited by E.A. Loria (Warrendale, PA, TMS, 2001) p.193
8 Z. J. Luo, H. Tang, F. C. Zeng, N. C. Guo,An effective technique for producing high performance IN718 forgings using hammers, Journal of Materials Processing Technology, 28, 383(1991)
9 LIU Dong,LUO Zijian, Optimizing microstructures and properties of IN718 alloy forgings via control of δ phase, Chinese Journal of Rare Metals, 29(2), 152(2005)
9 (刘 东, 罗子健, 通过控制δ相以优化IN718合金锻件的组织和性能, 稀有金属, 29(2), 152(2005))
10 H. Yuan, W. C. Liu,Effect of the delta phase on the hot deformation behavior of Inconel 718, Materials Science and Engineering A, 408, 281(2005)
11 Y. Wang, L. Zhen, W. Z. Shao, L. Yang, X. M. Zhang,Hot working characteristics and dynamic recrystallization of delta-processed superalloy 718, Journal of Alloys and Compounds, 44, 341(2009)
12 Y. Wang, W. Z. Shao, L. Zhen, B. Y. Zhang,Hot deformation behavior of delta-processed superalloy 718, Materials Science and Engineering A, 528, 3218(2011)
13 K. Wang, M. Q. Li, J. Luo, C. Li,Effect of the δ phase on the deformation behavior in isothermal compression of superalloy GH4169, Materials Science and Engineering A, 528, 4723(2011)
14 YANG Ping,ZHAO Yutao, WANG Andong, MIAO Dong, CHEN Gang, HE Yi, Flow stress behavior of delta-processed Inconel 718 superalloy under hot compression deformation, The Chinese Journal of Nonferrous Metals, 22(1), 72(2012)
14 (杨 平, 赵玉涛, 王安东, 缪 栋, 陈 刚, 何 毅,Delta工艺Inconel 718 合金热变形条件下的流变行为, 中国有色金属学报, 22(1), 72(2012))
15 WEI Jiahu,DONG Jianxin, YU Jian, YAO Zhihao, FU Shuhong, Influence of δ phase on hot deformation behavior of GH4169 alloy, Journal of Aeronautical Materials, 32(6), 72(2012)
15 (韦家虎, 董建新, 喻 健, 姚志浩, 付书红, δ相对GH4169合金热变形行为的影响, 航空材料学报, 32(6), 72(2012))
16 R. E. Schafrik, D. D. Ward, J. R. Groh, Application of alloy 718 in GE aircraft engines: past, present and next five years, in: Superalloys 718, 625, 706 and Various Derivatives, edited by E. A. Loria (Warrendale, PA, TMS, 2001) p.1
17 D. Zhao, P. K. Chaudhury, Effect of starting grain size on as-deformed microstructure in high temperature deformation of alloy 718, in: Superalloys 718, 625, 706 and Various Derivatives, edited by E.A. Loria (Warrendale, PA, TMS, 1994) p.303
18 W. C. Liu, F. R. Xiao, M. Yao,Quantitative phase analysis of Inconel 718 by X-ray diffraction, Journal of Materials Science Letters, 16, 769(1997)
19 W. C. Liu, F. R. Xiao, M. Yao, H. Yuan,Influence of cold rolling on the precipitation kinetics of γ″ and δ phases in Inconel 718 alloy, Journal of Materials Science Letters, 17, 245(1998)
20 Y. Wang, W. Z. Shao, L. Zhen, L. Yang, X. M. Zhang,Flow behavior and microstructures of superalloy 718 during high temperature deformation, Materials Science and Engineering A, 497, 479(2008)
21 MAO Weimin, ZHAO Xinbing, Metal Recrystallization and Grain Growth (Beijing, Metallurgical Industry Press, 1994) p.213-216
21 (毛卫民, 赵新兵, 金属的再结晶与晶粒长大(北京, 冶金工业出版社, 1994).p213-216)
22 Y. Zhang, X. B. Huang, Y. Wang, W. C. Yu, Z Q. Hu, Delta phase and deformation fracture behaviour of Inconel 718 alloy, in: Superalloys 718, 625, 706 and Various Derivatives, edited by E.A. Loria (Warrendale, PA, TMS, 1997) p.229
23 G. S. Shen, S. L. Semiatin, R. Shivpuri,Modeling microstructure development during the forging of waspaloy, Metallurgical and Materials Transactions A, 26, 1795(1995)
24 ZHANG Haiyan,ZHANG Shihong, CHENG Ming, Evolution of δ phase in Inconel 718 alloy during Delta process, Acta Metallurgica Sinica, 45(12), 1451(2009)
24 (张海燕, 张士宏, 程 明, Delta工艺中Inconel718合金中δ相的演变机制, 金属学报, 45(12), 1451(2009))
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.