Please wait a minute...
材料研究学报  2014, Vol. 28 Issue (2): 144-152    DOI: 10.11901/1005.3093.2013.315
  本期目录 | 过刊浏览 |
Mg-Zn-Zr合金高应变速率多向锻造组织演变及力学性能*
吴远志1,3(),严红革2,朱素琴2,陈吉华2,刘安民1,3,刘先兰1
1. 湖南工学院机械工程学院 衡阳 421002
2. 湖南大学材料科学与工程学院 长沙 410082
3. 湖南工学院先进制造技术研究所 衡阳 421002
Microstructure Evolution and Mechanical Properties of Mg-Zn-Zr Alloys During High Strain Rate Triaxial-Forging
Yuanzhi WU1,3,**(),Hongge YAN2,Suqin ZHU2,Jihua CHEN2,Anmin LIU1,3,Xianlan LIU1
1. Department of Mechanical Engineering, Hunan Institute of Technology, Hengyang 421002
2. School of Materials Science and Engineering, Hunan University, Changsha 410082
3. Institute of Advance Manufacturing Technology, Hunan Institute of Technology, Hengyang 421002
引用本文:

吴远志,严红革,朱素琴,陈吉华,刘安民,刘先兰. Mg-Zn-Zr合金高应变速率多向锻造组织演变及力学性能*[J]. 材料研究学报, 2014, 28(2): 144-152.
Yuanzhi WU, Hongge YAN, Suqin ZHU, Jihua CHEN, Anmin LIU, Xianlan LIU. Microstructure Evolution and Mechanical Properties of Mg-Zn-Zr Alloys During High Strain Rate Triaxial-Forging[J]. Chinese Journal of Materials Research, 2014, 28(2): 144-152.

全文: PDF(11725 KB)   HTML
摘要: 

对Mg-Zn-Zr合金进行高应变速率多向锻造变形, 研究了其组织演变和力学性能。结果表明, 高应变速率多向锻造工艺能强烈细化合金的晶粒组织, 形成由蜂窝状粗大再结晶组织和岛状细小再结晶组织构成的新颖组织, 初始晶界附近和初始晶粒内部的再结晶机制分别是旋转动态再结晶和孪生诱发动态再结晶。由于高应变速率多向锻造工艺具有强烈的晶粒细化能力并能有效避免强烈的基面织构, 可大幅提高合金的综合力学性能。累积应变∑Δε=2.64时, ZK21和ZK60抗拉强度、屈服强度和延伸率分别为341.6 MPa、270.7 MPa、25.1%和330.2 MPa、232.3 MPa、24.8%。

关键词 金属材料镁合金高应变速率多向锻造显微组织力学性能    
Abstract

High strain rate triaxial-forging (HSRTF) was successfully conducted on three Mg–Zn–Zr alloys by using a pneumatic power hammer. The microstructure evolution and mechanical properties of the forged alloys were investigated. The results show that HSRTF significantly refined the grains due to dynamic recrystallization (DRX). A novel microstructure was obtained, which was mixed by honeycombe-like coarse DRX grains and island-like ultrafine DRX grains. The two features of the mixed microstructure were caused by different DRX mechanisms, i.e., rotation DRX at the initial grain boundaries and twin-induced DRX in the interior of the initial grains. The mechanical properties were dramatically improved, resulting from the severe grain refinement and weakening of the basal texture due to HSRTF.For ZK21 and ZK60 alloys, after HSRTF with an accumulative strain ∑Δε=2.64, excellent tensile properties were achieved with an ultimate tensile strength, yield strength and elongation of 341.6 MPa, 270.7 MPa, 25.1% and 330.2 MPa, 232.3 MPa, 24.8%, respectively.

Key wordsmetallic materials    magnesium alloys    high strain rate triaxial-forging    microstructure    mechanical properties
收稿日期: 2013-05-14     
基金资助:* 国家自然科学基金51274092, 湖南省自然科学基金14JJ6047 和教育部博士点基金20120161110040 资助项目。
作者简介: 本文联系人: 吴远志
Alloy Nominal compositions/% Initial state Initial grain size/μm
Zn Zr Mg
ZK10 1.0 0.45 Bal. As-cast 260
ZK21 2.3 0.45 Bal. As-cast 150
ZK60 5.5 0.45 Bal. Homogenized 100
表1  Mg-Zn-Zr合金名义成分(质量分数)及初始状态
图1  高应变速率多向锻造及拉伸试样取样示意图
图2  ZK10合金高应变速率多向锻造组织演变
图3  不同累积应变ZK10合金TEM像
图4  ZK21合金高应变速率多向锻造组织演变
图5  不同累积应变ZK21合金TEM像
图6  ZK60合金高应变速率多向锻造组织演变
图7  不同累积应变ZK60合金TEM像
图8  Mg-Zn-Zr合金高应变速率多向锻造组织演变模型
图9  高应变速率多向锻造Mg-Zn-Zr合金室温拉伸曲线
Alloys and Accumulated strain σs / MPa σb / MPa δ / %
ZK10-0.22 130.5 191.4 9.4
ZK10-1.32 168.9 247.3 12.1
ZK10-1.98 237.8 295.2 8.2
ZK10-2.64 187.6 265 19.9.
ZK10-3.3 180.3 251.8 24.5
ZK21-0.22 185.1 247.2 7.5
ZK21-0.66 263.9 344.4 12.0
ZK21-1.1 323.2 401.8 9.6
ZK21-1.76 279.3 353.4 18.4
ZK21-2.64 270.7 341.6 25.1
ZK60-0.22 193.8 279.1 10.7
ZK60-0.66 218.3 318.6 17.6
ZK60-1.32 240.7 348.2 20.5
ZK60-1.98 235.1 335.7 22.6
ZK60-2.64 232.3 330.2 24.8
表2  高应变速率多向锻造Mg-Zn-Zr合金不同累积应变时的室温力学性能
1 B. L. Mordike, T. Ebert. Magnesium: Properties-applications- potential, Materials Science and Engineering A, 302(1), 37(2001)
2 E. Aghion, B. Bronfin, D. J. Eliezer,The role of magnesium industry in protecting environment , Journal of Materials Processing Technology, 117(3), 381(2001)
3 M. M. AVEDESIAN, H. BAKER,ASM specialty handbook: Magnesium and magnesium alloys, 1st edition, (Materials Park, ASM International, 1999)p.7-8
4 LI Xiao,YANG Ping, LI Jizhong, DING Hua, Precipitation behavior, texture and mechanical properties of AZ80 magnesium produced by equal channel angular extrusion, Chinese Journal of Materials Research, 24(1), 1(2010)
4 (李 萧, 杨 平, 李继忠, 丁 桦, 等通道角挤压AZ80镁合金的析出行为和性能, 材料研究学报, 24(1), 1(2010))
5 Y. J. Chen, Q. D. Wang, H. J. Roven, M. P. Liu, M. Karlsen, Y. D.YU, J. HJELEN,Network-shaped fine-grained microstructure and high ductility of magnesium alloy fabricated by cyclic extrusion compression, ScriptaMaterialia, 58(4), 311(2008)
6 ZHAN Meiyan,LI Chunming, ZHANG Weiwen, ffect of rolling temperature and accumulated strain on the microstructure and mechanical properties of AZ31 alloy sheet by accumulated roll-bonding, Chinese Journal of Materials Research, 25(6), 637(2011)
6 (詹美燕, 李春明, 张卫文, 轧制温度和累积应变对累积叠轧焊AZ31镁合金板材组织和性能的影响, 材料研究学报, 25(6), 637(2011))
7 M. T. Pérez-Prado, J. A. Del Valle, O. A.Ruano,Achieving high strength in commercial Mg cast alloys through large strain rolling, Materials Letters, 59(26), 3299(2005)
8 H. Miura, T. Maruoka, X. Yang, J. J.Jonas,Microstructure and mechanical properties of multi-directionally forged Mg-Al-Zn alloy, ScriptaMaterialia, 66(1), 49(2012)
9 GUO Qiang,YAN Hongge, CHEN Zhenhua, ZHANG Hui, Effect of multiple forging process on microstructure and mechanical properties of magnesium alloy AZ80, ActaMetallurgicaSinica, 42(7), 739(2006)
9 (郭 强, 严红革, 陈振华, 张 辉, 多向锻造工艺对AZ80镁合金显微组织和力学性能的影响, 金属学报, 42(7), 739(2006))
10 Q. Guo, H. G. Yan, Z. H. Chen, H. Zhang,Grain refinement in as-cast AZ80 alloy under large strain deformation, Materials Characterization, 58(2), 162(2007)
11 YANG Xueyue,SUN Huan, WU Xingxing, MA Jijun, QIN Jia, HUO Qinghuan, Evolutions of microstructure and microtexture in AZ21 Mg alloy during multi-directional forging under decreasing temperature conditions, ActaMetallurgicaSinica, 48(7), 129(2012)
11 (杨续跃, 孙 欢, 吴新星, 马继军, 秦 佳, 霍庆欢, AZ21镁合金降温多向压缩过程中的组织和微观织构演化, 金属学报, 48(7), 129(2012))
12 X. Y. Yang, Z. Y. Sun, J. Xing, H. Miura, T. Sakai,Grain size and texture changes of magnesium alloy AZ31 during multi-directional forging, Transactions of Nonferrous Metals Society of China, 18(1), 200(2008)
13 Z. R. Zhang, J. Xing, X. Yang, H. Miura, T. Sakai,Anisotropy of low temperature superplasticity of fine grained magnesium alloyAZ31processed by multidirectional forging, Materials Science and Technology, 25(12), 1442(2009)
14 H. Miura, G. Yu, X.Yang,Multi-directional forging of AZ61Mg alloy under decreasing temperature conditions and improvement of its mechanical properties, Materials Science and Engineering A, 528(22-23), 6981(2011)
15 Y. Z. Wu, H. G. Yan, J. H. Chen, Y. G. Du, S. Q. Zhu, B. Su,Microstructure and mechanical properties of ZK21 magnesium alloy processed by multiple forging at different strain rate, Materials Science and Engineering A, 556, 164(2012)
16 Y. Z. Wu, H. G. Yan, J. H. Chen, S. Q. Zhu, B. Su, P. L. Zeng,Microstructure and mechanical properties of ZK60 alloy fabricated by multiple forging, Material Science and Technology, 29(1), 54(2013)
17 WU Yuanzhi,YAN Hongge, CHEN Jihua, ZHU Suqin, BO Hongwei, WANG Linwei. Microstructure evolution and mechanical properties of AZ31 magnesium alloy fabricated by high strain rate triaxial-forging, The Chinese Journal of Nonferrous Metals, 22(11): 3000(2012)
17 (吴远志, 严红革, 陈吉华, 朱素琴, 薄红伟, 王林伟, AZ31镁合金高应变速率多向锻造组织演变及力学性能, 中国有色金属学报, 22(11): 3000(2012)
18 J. A. Del Valle, M. T. Pérez-Prado, O. A.Ruano,Texture evolution during large-strain hot rolling of the Mg AZ61 alloy, Materials Science and Engineering A, 355(1-2), 68(2003)
19 S. E. Ion, F. J. Humphreys, S. H. White,Dynamic recrystallisation and the development of microstructure during the high temperature deformation of magnesium, Acta Materialia, 30(10), 1909(1982)
20 H. Q. Sun, Y. N. Shi, M. A. Zhang, K. Lu,Plastic strain-induced grain refinement in the nanometer scale in a Mg alloy, Acta Materialia, 55(3), 975(2007)
21 Q. Ma, B. Li, E. B. Marin, S. J. Horstemeyer,Twinning-induced dynamic recrystallization in a magnesium extruded at 450℃, ScriptaMaterialia, 65(9), 823(2011)
22 A. Galiyev, O. Sitdikov, R. Kaibyshev,Deformation behavior and controlling mechanisms for plastic flow of magnesium and magnesium alloy, Materials Transactions, 44(4), 426(2003)
23 Y. F. Shen, L. Lu, Q. H. Lu, Z. H. Jin,K Lu, Tensile properties of copper with nano-scale twins, ScriptaMaterialia, 52(10), 989(2005)
24 S. Q. Zhu, H. G. Yan, J. H. Chen, Y. Z. Wu, J. Z. Liu, J. Tian,Effect of twinning and dynamic recrystallization on the high strain rate rolling process, ScriptaMaterialia, 63(10), 985(2010)
25 S. Q. Zhu, H. G. Yan, J. H. Chen, Y. Z. Wu, Y. G. Du, X. Z. Liao,Fabrication of Mg-Al-Zn-Mn alloy sheets with homogeneous fine-grained structures using high strain-rate rolling in a wide temperature range, Materials Science and Engineering A, 599, 765(2013)
26 S. Ringeval, D. Piot, C. Desrayaud, J. H. Driver,Texture and microtexture development in an Al-3Mg-Sc (Zr) alloy deformed by triaxial forging, ActaMaterialia, 54(11), 3095(2006)
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[12] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[13] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[14] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[15] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.