Please wait a minute...
材料研究学报  2009, Vol. 23 Issue (4): 352-356    
  研究论文 本期目录 | 过刊浏览 |
二氧化硅基质包埋硅纳米晶的微观结构和发光性能
王乙潜1;  梁文双1;  G.G.ROSS2
1.青岛大学国家重点实验室培育基地~青岛市宁夏路308号 青岛 266071
2.INRS-EMT; 1650 boulevard Lionel-Boulet; Varennes; Canada J3X 1S2
Microstructure and optical properties of Si nanocrystals embedded in SiO2 film
WANG Yiqian1;  LIANG Wenshuang1;  ROSS Guy2
1.The Cultivation Base for State Key Laboratory; Qingdao University; No.308; Ningxia Road; Qingdao; 266071
2.INRS-EMT; 1650 boulevard Lionel-Boulet; Varennes; Canada; J3X 1S2
引用本文:

王乙潜 梁文双 G.G.ROSS. 二氧化硅基质包埋硅纳米晶的微观结构和发光性能[J]. 材料研究学报, 2009, 23(4): 352-356.
, , . Microstructure and optical properties of Si nanocrystals embedded in SiO2 film[J]. Chin J Mater Res, 2009, 23(4): 352-356.

全文: PDF(1034 KB)  
摘要: 

利用离子注入和后续高温退火的方法制备了包埋在二氧化硅(SiO2)基质中的硅纳米晶, 研究了不同离子注入浓度试样的微观结构和发光性能, 以及硅纳米晶的生长机理和发光机制. 结果表明:  较小的硅纳米晶(<5 nm)其生长机理符合Ostwald熟化机理, 较大的纳米晶(>10 nm)则是由多个小纳米晶粒通过孪晶组合或融合而成的; 离子注入浓度为8 ×1016cm-2的样品其发光强度是离子注入浓度为3×1017cm -2样品发光强度的5倍;硅纳米晶内部的微观结构缺陷(如孪晶和层错)对其荧光强度有很大的影响.

关键词 无机非金属材料硅纳米晶电子显微学生长机理荧光光谱    
Abstract

Si nanocrystals have been fabricated in SiO2 film using ion implantation followed by high-temperature annealing. The microstructure and optical properties of the samples with different Si+ implantation doses were investigated, and the growth mechanism and light emission mechanism were explored. The experimental results indicated that for small Si nanocrystals (<5 nm), the growth mechanism conforms to Ostwald ripening; while for the big ones (>10 nm), the coalescence of small nanoparticles through twinning is dominant. The
photoluminescence (PL) investigation showed that the PL spectrum intensity from the sample with an implantation dose of 3 ×1017/cm2 dropped by a factor of 5 compared with that from the sample with an implantation dose of 8×1016/cm2 . The correlation between microstructure and PL indicated that the microstructural defects, such as twinning and stacking faults inside the Si nanocrystals have a great influence on the PL intensity.

Key wordsinorganic non-metallic materials    Si nanocrystals    transmission electron microscopy    growth mechanism    photoluminescence
收稿日期: 2009-01-08     
ZTFLH: 

O472

 
基金资助:

青岛大学引进人才科研启动基金06300701和加拿大国家自然科学基金STPGP307205-04资助项目.

1 International Technology Roadmap for Semiconductors, 2005, website: http://www.itrs.net/Common/2005ITRS/Interconnect2005.pdf
2 T.S.Iwayama, S.Nakao, K.Saitoh, Visible photoluminescence in Si+–implanted thermal oxide films on crystalline Si, Appl. Phys. Lett., 65, 1814(1994)
3 Z.H.Lu, D.J.Lockwood, J.-M.Baribeau, Quantum confinement and light emission in SiO2/Si superlattices, Nature (London), 378, 258(1995)
4 S.Furukawa, T.Miyasato, Quantum size effects on the optical band gap of microcrystalline Si:H, Phys. Rev. B, 38, 5726(1998)
5 S.Hayashi, S.Tanimoto, M.Fujii, K.Yamamoto, Surface oxide layers of Si and Ge nanocrystals, Superlattices Microstruct., 8, 13(1990)
6 H.Takagi, H.Ogawa, Y.Yamazaki, A.Ishizaki, T.Nakagiri, Quantum size effects on photoluminescence in ultrafine Si particles, Appl. Phys. Lett., 56, 2379(1990)
7 Y.Q.Wang, R.Smirani, G.G.Ross, The effect of implantation dose on the microstructure of silicon nanocrystals in SiO2, Nanotechnology, 15, 1554 (2004)
8 F.Iacona, G.Franz`o, C.Spinella, Correlation between luminescence and structural properties of Si nanocrystals, J. Appl. Phys., 87, 1295(2000)
9 G.Franz`o, S.Boninelli, D.Pacifici, F.Priolo, F.Iacona, C.Bongiorno, Sensitizing properties of amorphous Si clusters on the 1.54 μm luminescence of Er in Si-rich SiO2, Appl. Phys. Lett., 82, 3871(2003)
10 F.Iacona, C.Bongiorno, C.Spinella, S.Boninelli, F.Priolo, Formation of evolution of luminescent Si nanoclusters produced by thermal annealing of SiOx films, J. Appl. Phys., 95, 3723(2004)
11 W.Ostwald, Z.Phys, Chem. (Leipzig), 34, 495(1900)
12 R.F.Pinizzotto, H.Yang, J.M.Perez, J.L.Coffer, J. Appl.Phys., 75, 4486(1994)
13 L.T.Canham, Luminescent bands and their proposed origins in highly porous silicon, Phys. Status Solidi B, 190, 9(1995)
14 L.N.Dinh, L.L.Chase, M.Balooch, W.J.Siekhaus, F.Wooten, Optical properties of passivated Si nanocrystals
and SiOx nanostructures, Phys. Rev. B, 54, 5029(1996)
15 T.Shimizu-Iwayama, N.Kurumado, D.E.Hole, P.D.Townsend, Optical properties of silicon nanoclusters
fabricated by ion implantation, J. Appl. Phys., 83, 6018(1998)
16 D.J.Eaglesham, A.E.White, L.C.Feldman, N.Moriya, D.C.Jacobson, Equilibrium shape of Si, Phys. Rev. Lett.,
70, 1643(1993)
17 W.Selke, P.M.Duxbury, Surface profile evolution above roughening, Z. Physik B, 94, 311(1994)
18 X.Yu, P.M.Duxbury, Kinetics of nonequilibrium shape change in gold clusters, Phys. Rev. B, 52, 2102(1995)

[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.