|
|
3D打印医用钛合金的抗菌性能和体外生物相容性 |
李改明1,2,4,5,刘思雨1,2,4,5,战德松1,2,4,5( ),刘蕊3,任玲3,杨柯3,王敬人1,2,4,5,王强1,2,4,5 |
1. 中国医科大学附属口腔医学院材料教研室 沈阳 110002 2. 辽宁省口腔医院研究所 沈阳 110002 3. 中国科学院金属研究所 沈阳 110819 4. 辽宁省口腔疾病重点实验室 沈阳 110002 5. 辽宁省口腔疾病转化医学研究中心 沈阳 110002 |
|
Antibacterial Properties and Biocompatibility of SLM-fabricated Medical Titanium Alloys |
Gaiming LI1,2,4,5,Siyu LIU1,2,4,5,Desong ZHAN1,2,4,5( ),Rui LIU3,Ling REN3,Ke YANG3,Jingren WANG1,2,4,5,Qiang WANG1,2,4,5 |
1. Department of Dental Material, School of Stomatology, China Medical University, Shenyang 110002, China 2. Liaoning Institute of Dental Research, Shenyang 110002, China 3. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 4. Liaoning Province Oral Diseases Key Laboratory, Shenyang 110002, China 5. Liaoning Province Oral Diseases Translation Medcicne Research Center, Shenyang 110002, China |
引用本文:
李改明,刘思雨,战德松,刘蕊,任玲,杨柯,王敬人,王强. 3D打印医用钛合金的抗菌性能和体外生物相容性[J]. 材料研究学报, 2019, 33(2): 117-123.
Gaiming LI,
Siyu LIU,
Desong ZHAN,
Rui LIU,
Ling REN,
Ke YANG,
Jingren WANG,
Qiang WANG.
Antibacterial Properties and Biocompatibility of SLM-fabricated Medical Titanium Alloys[J]. Chinese Journal of Materials Research, 2019, 33(2): 117-123.
[1] | Yan T F. The current situation and developmental trend of biomedical materials [J]. China Med. Dev. Inf., 2006, 12(5): 1 | [1] | (奚廷斐. 生物医用材料现状和发展趋势 [J]. 中国医疗器械信息, 2006, 12(5): 1) | [2] | Li Y, Liu L N, Wan P, et al. Biodegradable Mg-Cu alloy implants with antibacterial activity for the treatment of osteomyelitis: In vitro and in vivo evaluations [J]. Biomaterials, 2016, 106: 250 | [3] | Mombelli A, Müller N, Cionca N. The epidemiology of peri-implantitis [J]. Clin. Oral. Implants Res., 2012, 23 Suppl 6: 67 | [4] | Liu R, Memarzadeh K, Chang B, et al. Antibacterial effect of copper-bearing titanium alloy (Ti-Cu) against Streptococcus mutans and Porphyromonas gingivalis [J]. Sci. Rep., 2016, 6: 29985 | [5] | Cacciotti I, Bianco A. High thermally stable Mg-substituted tricalcium phosphate via precipitation [J]. Ceram. Int., 2011, 37: 127 | [6] | Kalita S J, Bhatt H A. Nanocrystalline hydroxyapatite doped with magnesium and zinc: Synthesis and characterization [J]. Mater. Sci. Eng., 2007, 27C: 837 | [7] | Wu C T, Ramaswamy Y, Kwik D, et al. The effect of strontium incorporation into CaSiO3 ceramics on their physical and biological properties [J]. Biomaterials, 2007, 28: 3171 | [8] | Rensing C, Grass G. Escherichia coli mechanisms of copper homeostasis in a changing environment [J]. FEMS Microbiol. Rev., 2003, 27: 197 | [9] | Ma Z, Ren L, Yang K, et al. Effect of heat treatment on Cu distribution, antibacterial performance and cytotoxicity of Ti-6Al-4V-5Cu alloy [J]. J. Mater. Sci. Technol., 2015, 31: 723 | [10] | Ren L, Li M, Zhang Y, et al. Antibacterial properties of Ti-6Al-4V-xCu alloys [J]. J. Mater. Sci. Technol., 2014, 30: 699 | [11] | Burghardt I, Lüthen F, Prinz C, et al. A dual function of copper in designing regenerative implants [J]. Biomaterials, 2015, 44: 36 | [12] | Zhang B, Huang Q R, Gao Y, et al. Preliminary study on some properties of Co-Cr dental alloy formed by selective laser melting technique [J]. Wuhan Univ. J. Technol. Mater., 2012, 27: 665 | [13] | Huang W Y, Jiang M Z, Zhan D S. Single crown restoration with 3 shape Trios scanner and 3D printing technology [J]. Chin. J. Pract. Stomatol., 2017, 10: 279 | [13] | (黄婉怡, 姜慕舟, 战德松. 口内扫描仪结合3D打印技术单冠固定修复临床研究 [J]. 中国实用口腔科杂志, 2017, 10: 279 | [14] | Habijan T, Haberland C, Meier H, et al. The biocompatibility of dense and porous Nickel-Titanium produced by selective laser melting [J]. Mater. Sci. Eng., 2013, 33C: 419 | [15] | Figliuzzi M, Mangano F, Mangano C. A novel root analogue dental implant using CT scan and CAD/CAM: selective laser melting technology [J]. Int. J. Oral Maxill. Surg., 2012, 41: 858 | [16] | Zhao B, Xu D K, Sun Z Q, et al. In vitro biocompatibility and antibacterial property of a novel magnesium phosphate whisker [J]. Chin. J. Mater. Res., 2016, 30: 220 | [16] | (赵 冰, 徐大可, 孙子晴等. 新型磷镁晶须的体外生物相容性和抗菌性能 [J]. 材料研究学报, 2016, 30: 220 | [17] | Foreman A, Boase S, Psaltis A, et al. Role of bacterial and fungal biofilms in chronic rhinosinusitis [J]. Curr. Allergy Asthma Rep., 2012, 12: 127 | [18] | Rensing C, Grass G. Escherichia coli mechanisms of copper homeostasis in a changing environment [J]. FEMS Microbiol. Rev., 2003, 27: 197 | [19] | Kang M K, Moon S K, Kwon J S, et al. Antibacterial effect of sand blasted, large-grit, acid-etched treated Ti-Ag alloys [J]. Mater. Res. Bull., 2012, 47: 2952 | [20] | Mei S L, Wang H Y, Wang W, et al. Antibacterial effects and biocompatibility of titanium surfaces with graded silver incorporation in titania nanotubes [J]. Biomaterials, 2014, 35: 4255 | [21] | Zheng Y H, Li J B, Liu X Y, et al. Antimicrobial and osteogenic effect of Ag-implanted titanium with a nanostructured surface [J]. Int J Nanomedicine, 2012, 7: 875 | [22] | Holmes C J, Faict D. Peritoneal dialysis solution biocompatibility: definitions and evaluation strategies [J]. Kidney Int., 2003, 64(Suppl. 88): S50 | [23] | Scheiber I F, Mercer J F B, Dringen R. Metabolism and functions of copper in brain [J]. Progr. Neurobiol., 2014, 116: 33 | [24] | Szymański P, Fraczek T, Markowicz M, et al. Development of copper based drugs, radiopharmaceuticals and medical materials [J]. Biometals, 2012, 25: 1089 | [25] | Qi X H, Jiang H W. Matrix vesicles and their relationship with cytoskeleton-associated proteins [J]. Int. J. Stomatol., 2018, 45: 204 | [25] | (冼雪红, 蒋宏伟. 基质小泡及其与细胞骨架蛋白的关系 [J]. 国际口腔医学杂志, 2018, 45: 204) | [26] | Yu T H, Zhang N, Zhan D S. Evaluation of biocompatibilities of three dental alloys by flow cytometry [J]. Chin. J. Mater. Res., 2013, 27: 652 | [26] | (毓天昊, 张 宁, 战德松. 使用流式细胞仪评价3种牙科合金材料的生物相容性 [J]. 材料研究学报, 2013, 27: 652) | [27] | Jin S J, Qi X, Wang T M, et al. In vitro study of stimulation effect on endothelialization by a copper bearing cobalt alloy [J]. Biomed. J. Mater. Res., 2018, 106A: 561 | [28] | Ren L, Wong H M, Yan C H, et al. Osteogenic ability of Cu-bearing stainless steel [J]. Biomed. J. Mater. Res, 2015, 103B: 1433 | [29] | Kemp M G. Crosstalk between apoptosis and autophagy: environmental Genotoxins, infection, and innate immunity [J]. J. Cell Death, 2017, 10, doi: 10.1177/1179670716685085. | [30] | Jivan R, Damelin L H, Birkhead M, et al. Disulfiram/copper-disulfiram damages multiple protein degradation and turnover pathways and cytotoxicity is enhanced by metformin in oesophageal squamous cell carcinoma cell lines [J]. J Cell Biochem, 2015, 116: 2334 | [31] | Wu X, Xue X, Wang W J, et al. Suppressing autophagy enhances disulfiram/copper-induced apoptosis in non-small cell lung cancer [J]. Eur. J. Pharmacol., 2018, 827: 1 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|