Please wait a minute...
材料研究学报  2018, Vol. 32 Issue (2): 149-154    DOI: 10.11901/1005.3093.2017.262
  研究论文 本期目录 | 过刊浏览 |
添加剂对亚稳相γ-Bi2O3的低温水相合成和光性能的影响
王亚军(), 于海洋, 李泽雪, 郭梁
北京理工大学 爆炸科学与技术国家重点实验室 北京 100081
Effect of Additives on Synthesis and Optical Property of Metastable γ-Bi2O3
Yajun WANG(), Haiyang YU, Zexue LI, Liang GUO
State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
引用本文:

王亚军, 于海洋, 李泽雪, 郭梁. 添加剂对亚稳相γ-Bi2O3的低温水相合成和光性能的影响[J]. 材料研究学报, 2018, 32(2): 149-154.
Yajun WANG, Haiyang YU, Zexue LI, Liang GUO. Effect of Additives on Synthesis and Optical Property of Metastable γ-Bi2O3[J]. Chinese Journal of Materials Research, 2018, 32(2): 149-154.

全文: PDF(4028 KB)   HTML
摘要: 

以乙二醇-水为溶剂体系,以Bi(NO3)35H2O为铋源、NaOH为沉淀剂,采用低温(80℃)水相一步合成法,反应40 min制备出尺寸为亚微米的亚稳相γ-Bi2O3粉末。使用X射线衍射(XRD)和扫描电镜(SEM)表征Bi2O3样品晶型和微观形貌,研究了在制备过程中添加剂(丙三醇、TrionX-100、CTAB、SDBS、乙醇、油酸)对亚稳相γ-Bi2O3微观形貌和光性能的影响。结果表明,样品大多为γ相,只有少量的α相,尺度在亚微米-微米间。加入不同的添加剂,样品的微观形貌不同,有立方体、四面体、自组装微花等。紫外-可见光谱(UV-Vis)分析结果表明,样品在紫外-可见光区有显著的光吸收。使用不同添加剂制备的样品其禁带宽度在较宽的范围(2.30~2.81 eV)变化,属于电子从价带跃迁到导带引起的吸收,为Bi2O3的直接带隙吸收。荧光光谱(PL)表明,样品在400~600 nm有5个发射谱带(谱带中心位于449、466、480、491和561 nm等处)。添加剂不但对样品的纯度和微观形貌有重要的影响,对晶体结构也有明显的影响。添加剂使材料的物理化学性能(如光性能)发生变化,加入添加剂可调节产品的禁带宽度。

关键词 无机非金属材料光性能溶液沉淀法γ-Bi2O3微结构    
Abstract

Metastable γ-Bi2O3 was prepared via a solution precipitation method in ethylene glycol-water solvent system at 80℃ for 40 min by ambient atmospheric pressure with Bi(NO3)35H2O as bismuth source and NaOH as precipitant. The effect of additives (glycerol, TrionX-100, CTAB, SDBS, ethanol, and oleic acid) on the microstructure and optical properties of metastable γ-Bi2O3 were investigated by means of X-ray diffractometer (XRD), scanning electron microscope (SEM), ultraviolet-visible spectrum (UV-VIS) and Fluorescence spectrum (PL). The as-prepared product composed mainly of γ-Bi2O3 and little α-Bi2O3 with dimensions of submicron to micron. Products with diversified morphologies such as cube, tetrahedron, and three-dimensional self-assembled hierarchical flower-like respectively were obtained by adding different additives. UV-visible diffuse reflectance spectrum shows that the product presents photo-absorption property from UV light- to visible light-range, which belongs to the absorption caused by electron transition from valence band to conduction band, that is Bi2O3 direct band gap absorption. The band gaps of Bi2O3 are estimated to be 2.30~2.81 eV for different additives. The fluorescence spectrum of the product shows broad emission (400~600 nm) with 5 emission bands (their center located at 449 nm, 466 nm, 480 nm, 491 nm, and 561 nm). The results also show that the additive not only has an important effect on the purity and microstructure of the product, but also has a significant effect on the crystal structure, which will change the physical and chemical properties (such as light properties) of the materials. By adding additives, the final bandgap width of the products can be adjusted.

Key wordsinorganic non-metallic materials    optical property    solution precipitation method    γ-Bi2O3    microstructure
收稿日期: 2017-04-17     
ZTFLH:  O614.53+2  
基金资助:爆炸科学与技术国家重点实验室(北京理工大学)自主课题(YBKT16-06)
作者简介:

作者简介 王亚军,男,1975年生,博士,讲师

图1  加入不同添加剂的Bi2O3样品的XRD图谱
Sample Additive Amount Microstructure Crystalline phase
A1 Glycerol 1.0 mL Cube γ, little α
A2 TrionX-100 6.0 mL Tetrahedron γ
A3 CTAB/SDBS 0.1 g/0.1 g Tetrahedron or self-assembled
micro flower by tetrahedron
γ
A4 Ethanol 10 mL Self-assembled micro flower by cube γ
A5 Oleic acid 1 mL Nano cube γ
A6 Ethanol/Oleic acid 10 mL/1 mL Nano cube γ, little α
表1  添加剂种类和用量及所制备的氧化铋样品的形貌和晶型
图2  不同添加剂下制备Bi2O3样品的SEM图
图3  亚稳相γ-Bi2O3的紫外-可见光吸收光谱图
图4  亚稳相γ-Bi2O3的(αhν)2~(hν)曲线图
图5  亚稳相γ-Bi2O3的荧光(PL)光谱图
[1] Mehring M.From molecules to bismuth oxide-based materials: Potential homo- and heterometallic precursors and model compounds[J]. Coord. Chem. Rev., 2007, 251(7-8): 974
[2] Hao W C, Gao Y, Jing X.Visible light photocatalytic properties of metastable γ-Bi2O3 with different morphology[J]. J. Mater. Sci. Technol., 2014, 30(2): 192
[3] Iyyapushpam S, Nishanthi S T, Pathinettam P D.Enhanced photocatalytic degradation of methyl orange by gamma Bi2O3 and its kinetics[J]. J. Alloys Compd., 2014, 601: 85
[4] Sun Y Y, Wang W Z, Zhang L, et al. Design and controllable synthesis of α-/γ-Bi2O3 homojunction with synergetic effect on photocatalytic activity[J]. Chem. Eng. J., 2012, 211-212: 161
[5] Li L, Yang Y W, Li G H, et al.Conversion of a Bi nanowire array to an array of Bi-Bi2O3 core-shell nanowires and Bi2O3 nanotubes[J]. Small, 2006, 2(4): 548
[6] Jing H H, Chen X Q, Jiang X Y.Controlled synthesis of bismuth oxide microtetrahedrons and cubes by precipitation in alcohol-water systems[J]. Micro Nano Lett., 2012, 7(4): 357
[7] Tseng T K, Choi J H, Jung D W, et al.Three-dimensional self-assembled hierarchical architectures of gamma-phase flowerlike bismuth oxide[J]. ACS Appl. Mater. Interfaces, 2010, 2(4): 943
[8] Wang Y, Li Y L.Metastable γ-Bi2O3 tetrahedra: Phase-transition dominated by polyethylene glycol, photoluminescence and implications for internal structure by etch[J]. J. Colloid Interface Sci., 2015, 454: 238
[9] Zhang J, Liu G, Wu W C. A low-temperature preparing method of γ-Bi2O3 photocatalyst[P]. China, CN-104741108 A, 2015(张静, 刘果, 吴维成. 一种γ晶相氧化铋(γ-Bi2O3)光催化剂的低温制备方法[P]. 中国, CN-104741108 A, 2015)
[10] Wang Y J, Li Z X, Yu H Y, et al.Controllable synthesis of metastable γ-Bi2O3 architectures and optical properties[J]. Mater. Sci. Semicond. Process., 2017, 64: 55
[11] Blasse G, Hao Z.The luminescence of yitria stabilized zirconia doped with Bi2O3[J]. Mater. Res. Bull., 1984, 19(84): 1057
[12] Vila M, Díaz-Guerra C, Piqueras J.Luminescence and Raman study of α-Bi2O3 ceramics[J]. Mater. Chem. Phys., 2012, 133(1): 559
[13] Zorenko Y, Gorbenko V, Voznyak T, et al.Luminescence spectroscopy of Bi3+ single and dimer centers in Y3Al5O12:Bi single crystalline films[J]. J. Lumin., 2010, 130(10): 1963
[14] Srivastava A M.Luminescence of divalent bismuth in M 2+ BPO5 (M 2+=Ba2+, Sr2+ and Ca2+)[J]. J. Lumin., 1998, 78(4): 239
[15] Gaft M, Reisfeld R, Panczer G, et al.The luminescence of Bi, Ag and Cu in natural and synthetic barite BaSO4[J]. Opt. Mater., 2001, 16(1): 279
[16] Kumari L, Lin J H, Ma Y R.One-dimensional Bi2O3 nanohooks: synthesis, characterization and optical properties[J]. J. Phys.: Condens. Matter, 2007, 19(40): 406204
[17] Wang Y J, Li Z X, Yu H Y, et al.Facile and one-pot solution synthesis of several kinds of 3D hierarchical flower-like α-Bi2O3 microspheres[J]. Funct. Mater. Lett., 2016, 9: 1650059
[18] Wang Y, Zhao J Z, Zhou B, et al.Three-dimensional hierarchical flowerlike microstructures of α-Bi2O3 constructed of decahedrons and rods[J]. J. Alloy Compd., 2014, 592: 296
[19] Wan Y, Xia L H, Zhao X S, et al.Effect of planar defects on optical properties in three-dimensional colloid crystals[J]. Acta Optic. Sin., 2009, 29(7): 1991(万勇, 夏临华, 赵修松, 等. 面缺陷对三维胶体晶体光学性质的影响[J]. 光学学报, 2009, 29(7): 1991)
[20] Zhu C Q, Lei Z T, Yang C H.Research progress of point defects effects on optical properties of ZnGeP2 crystals[J]. J. Synth. Cryst., 2012, 41(S1): 160(朱崇强, 雷作涛, 杨春晖. ZnGeP2晶体点缺陷影响光学性能的研究进展[J]. 人工晶体学报, 2012, 41(S1): 160)
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.