Please wait a minute...
材料研究学报  2018, Vol. 32 Issue (1): 17-24    DOI: 10.11901/1005.3093.2017.243
  研究论文 本期目录 | 过刊浏览 |
冷却速度及铝含量对含Nd的Zn-Al合金组织和耐蚀性的影响
曹祖军, 翁天宇, 孔纲(), 车淳山, 王彦启
华南理工大学材料科学与工程学院 广州 510640
Effect of Cooling Rate and Al-content on Microstructure and Corrosion Resistance of Zn-Al Alloys Containing Trace Nd
Zujun CAO, Tianyu WENG, Gang KONG(), Chunshan CHE, Yanqi WANG
School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
引用本文:

曹祖军, 翁天宇, 孔纲, 车淳山, 王彦启. 冷却速度及铝含量对含Nd的Zn-Al合金组织和耐蚀性的影响[J]. 材料研究学报, 2018, 32(1): 17-24.
Zujun CAO, Tianyu WENG, Gang KONG, Chunshan CHE, Yanqi WANG. Effect of Cooling Rate and Al-content on Microstructure and Corrosion Resistance of Zn-Al Alloys Containing Trace Nd[J]. Chinese Journal of Materials Research, 2018, 32(1): 17-24.

全文: PDF(6866 KB)   HTML
摘要: 

采用扫描电镜(SEM)和能谱(EDS)分析以及电化学极化和中性盐雾试验(NSS)等手段,研究了Zn-xAl(x=4%, 5%, 7%)-0.06%Nd合金在炉冷,空冷,水冷(冷却速度分别为0.03,1.08和40℃/s)条件下的凝固组织与耐蚀性。结果表明:随着冷却速度的增加,合金组织不断细化,共晶组织的层片间距不断减小,而耐腐蚀性先增大后减小,且稀土Nd的添加有利于进一步减小共晶层片间距和提高合金的耐腐蚀性能。空冷条件下获得的Zn-5%Al-0.06%Nd合金的耐蚀性最佳。Al含量在4%~7%之间变化时,主要引起合金组织的变化,而对合金耐腐蚀性影响不大。

关键词 金属材料耐蚀性极化曲线显微组织冷却速度Zn-Al合金    
Abstract

The effect of cooling rate (0.03, 1.08 and 40°C/s) and Al-content on the solidified microstructure and corrosion resistance of Zn-xAl (x=4%, 5%, 7%)-0.06%Nd alloys used for hot-dip galvanizing were examined by means of scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), polarization curves tests and neutral salt spray tests (NSS). The results show that the solidified microstructure of alloys is refined and the eutectic lamellar spacing became smaller as the cooling rate increases, and the corrosion resistance of the alloy increases initially and decreases afterwards with the increase of the cooling rate. Moreover, the addition of Nd can be beneficial to the further reduction of the eutectic lamellar spacing and the improvement of the corrosion resistance of the alloys. Therefore, after air cooling, the Zn-5%Al-0.06%Nd alloy presents the best corrosion resistance. Besides, the variation of Al-content between 4% and 7% caused mainly the change of microstructure, but little effect on the corrosion resistance of the alloys.

Key wordsmetallic materials    corrosion resistance    polarization curve    microstructure    cooling rate    Zn-Al alloy
收稿日期: 2017-04-10     
ZTFLH:  TG146.1  
基金资助:国家自然科学基金 (21573077和51373055),国际铅锌研究组织资助(ILZRO/IZA/CN201212)
作者简介:

作者简介 曹祖军,男,1991年生,硕士

图1  Zn-5% Al和Zn-5%Al-0.06%Nd合金以炉冷、空冷和水冷方式冷却至室温时的金相组织
图2  图1a中区域A和区域B的EDS分析结果
图3  合金层片间距与冷却速率间的关系
图4  不同Al含量的Zn-Al合金空冷组织的SEM图像
图5  Zn-5%Al合金凝固示意图
图6  合金试样在3.5%NaCl溶液中的极化曲线
Rare earth Sample Ecorr /V RP /Ωcm2 Icorr /μAcm-2
Without Nd Zn-5%Al (FC) -1.115 4588 3.078
Zn-5%Al (AC) -1.118 8587 2.046
Zn-5%Al (WC) -1.136 4663 2.636
Zn-4%Al (AC) -1.094 5397 2.333
Zn-7%Al (AC) -1.150 6228 2.297
0.06%Nd Zn-5%Al (FC) -1.143 9080 1.761
Zn-5%Al(AC) -1.113 13371 0.984
Zn-5%Al (WC) -1.148 9357 1.530
Zn-4%Al (AC) -1.098 6899 1.783
Zn-7%Al (AC) -1.154 9841 1.677
表1  图6中极化曲线的相关参数
图7  不同冷却速度的Zn-5%Al和Zn-5%Al-0.06%Nd合金的NSS结果
图8  不同Al含量的合金的NSS结果
[1] Shibli S M A, Meena B N, Remya R. A review on recent approaches in the field of hot dip zinc galvanizing process[J]. Surf. Coat. Technol., 2015, 262: 210
[2] Wu X X, Kong G, Sun Z W, et al.Preparation and corrosion performance of lanthanum nitrate conversion coating on hot-dip Galfan steel[J]. Chin. J. Mater. Res., 2016(04): 269(吴晓晓, 孔纲, 孙子文等. 热浸镀Galfan表面镧盐转化膜的生长和耐腐蚀性能的研究[J]. 材料研究学报, 2016(04): 269)
[3] Sullivan J, Penney D, Elvins J, et al.The effect of ultrasonic irradiation on the microstructure and corrosion rate of a Zn-4.8wt.% Al galvanising alloy used in high performance construction coatings[J]. Surf. Coat. Technol., 2016, 306(4): 480
[4] Zelechower, Kli? J, Augustyn E, et al. The microstructure of annealed Galfan coating on steel substrate[J]. Archives of Metallurgy and Materials. 2012, 57(2): 517
[5] Feliu S, Barranco V.XPS study of the surface chemistry of conventional hot-dip galvanised pure Zn, galvanneal and Zn-Al alloy coatings on steel[J]. Acta Mater., 2003, 51(18): 5413
[6] Zhang X, Leygraf C, Odnevall Wallinder I.Atmospheric corrosion of Galfan coatings on steel in chloride-rich environments[J]. Corros. Sci., 2013, 73: 62
[7] Elvins J, Spittle J A, Worsley D A.Microstructural changes in zinc aluminium alloy galvanising as a function of processing parameters and their influence on corrosion[J]. Corros. Sci., 2005, 47(11): 2740
[8] Penney D J, Sullivan J H, Worsley D A.Investigation into the effects of metallic coating thickness on the corrosion properties of Zn-Al alloy galvanising coatings[J]. Corros. Sci., 2007, 49(3): 1321
[9] Rosalbino F, Angelini E, Macciò D, et al.Influence of rare earths addition on the corrosion behaviour of Zn-5%Al (Galfan) alloy in neutral aerated sodium sulphate solution[J]. Electrochim. Acta, 2007, 52(24): 7107
[10] Rosalbino F, Angelini E, Macciò D, et al.Application of EIS to assess the effect of rare earths small addition on the corrosion behaviour of Zn-5%Al (Galfan) alloy in neutral aerated sodium chloride solution[J]. Electrochim. Acta, 2009, 54(4): 1204
[11] Jare?o E D, Castro M J, Maldonado S I, et al.The effects of Cu and cooling rate on the fraction and distribution of epsilon phase in Zn-4Al-(3-5.6) Cu alloys[J]. J. Alloys Compd., 2010, 490(1-2): 524
[12] Mojaver R, Shahverdi H R.Relationship between cooling rate, microstructure features and wear behavior in end-chill cast Zn-27%Al alloys containing more than 2% Cu[J]. Wear., 2011, 271(11-12): 2899
[13] Yan S Q, Xie J P.Effect of cooling rate and Al contents on microstructure and hardness of Zn-based alloy[J]. Hot Working Technology, 2007(16): 10(闫淑卿, 谢敬佩. 冷却速度及铝含量对锌合金组织及硬度的影响[J]. 热加工工艺, 2007(16): 10)
[14] Tan J, Ju C, Gao H Y, et al.The effect of rare earth on corrosion resistance of hot-dip Galvanized coating[J]. J. Shanghai Jiaotong Univ., 2008(05): 757(谭娟, 鞠辰, 高海燕等. 稀土对热镀锌层耐蚀性的影响[J]. 上海交通大学学报, 2008(05): 757)
[15] Hu C J, Chu S J, Wang J, et al.Effects of lanthanum on corrosion resistance of hot-dip Galvanized coating[J]. Corrosion & Protection, 2011(07): 517(胡成杰, 储双杰, 王俊等. 稀土La对热镀锌层耐蚀性能的影响[J]. 腐蚀与防护, 2011(07): 517)
[16] Veys-Renaux D, Guessoum K, Rocca E, et al.New zinc-rare earth alloys: Influence of intermetallic compounds on the corrosion resistance[J]. Corros. Sci., 2013, 77: 342
[17] Jiang N, Chen L, Meng L, et al.Effect of neodymium, gadolinium addition on microstructure and mechanical properties of AZ80 magnesium alloy[J]. J. Rare Earths, 2016, 34(6): 632
[18] Su M, Zhang J, Feng Y, et al.Al-Nd intermetallic phase stability and its effects on mechanical properties and corrosion resistance of HPDC Mg-4Al-4Nd-0.2Mn alloy[J]. J. Alloys Compd., 2017, 691: 634
[19] Arrabal R, Mingo B, Pardo A, et al.Role of alloyed Nd in the microstructure and atmospheric corrosion of as-cast magnesium alloy AZ91[J]. Corros. Sci., 2015, 97: 38
[20] Hu Z, Ruan X, Yan H.Effects of neodymium addition on microstructure and mechanical properties of near-eutectic Al-12Si alloys[J]. T. Nonferr. Metal. Soc., 2015, 25(12): 3877
[21] Cao Z J, Kong G, Che C S.Effect of Nd addition on microstructure and corrosion resistance of Zn-5%Al alloy[J]. Chin. J. Nonferrous Met., 2017(01): 24(曹祖军, 孔纲, 车淳山. 稀土Nd对Zn-5%Al合金显微组织和耐蚀性的影响[J]. 中国有色金属学报, 2017(01): 24)
[22] Jackson K A, Hunt J D.Lamellar and rod eutectic growth[J]. AIME Met Soc Trans., 1966, 236: 1129
[23] Marder A R.The metallurgy of zinc-coated steel[J]. Prog. Mater. Sci., 2000, 45(3): 191
[24] Li H, Guo J, Huai K, et al.Microstructure characterization and room temperature deformation of a rapidly solidified NiAl-based eutectic alloy containing trace Dy[J]. J. Cryst. Growth, 2006, 290(1): 258
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.