Please wait a minute...
材料研究学报  2017, Vol. 31 Issue (6): 437-444    DOI: 10.11901/1005.3093.2016.533
  本期目录 | 过刊浏览 |
不同重金属对粉煤灰基地聚合物的影响作用
郭晓潞1,2(),伍亮2,施惠生1,2
1 先进土木工程材料教育部重点实验室(同济大学) 上海 201804
2 同济大学材料科学与工程学院 上海 201804
Effects of Different Heavy Metals on Fly Ash-based Geopolymer
Xiaolu GUO1,2(),Liang WU2,Huisheng SHI1,2
1 Key Laboratory of Advanced Civil Engineering Materials of the Ministry of Education, Tongji University, Shanghai 201804, China
2 School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
引用本文:

郭晓潞,伍亮,施惠生. 不同重金属对粉煤灰基地聚合物的影响作用[J]. 材料研究学报, 2017, 31(6): 437-444.
Xiaolu GUO, Liang WU, Huisheng SHI. Effects of Different Heavy Metals on Fly Ash-based Geopolymer[J]. Chinese Journal of Materials Research, 2017, 31(6): 437-444.

全文: PDF(4326 KB)   HTML
摘要: 

以粉煤灰为主要原材料制备粉煤灰基地聚合物,研究了掺入的重金属的种类、掺量、化学形态对地聚合物体系的抗压强度、反应产物、孔结构的影响。结果表明:Pb2+、Cr3+、Cu2+的掺入对固化体后期的抗压强度影响较大,在反应产物中出现了重硅钙石,含Pb2+固化体的总孔体积减小,而含Cr3+和Cu2+固化体的总孔体积增大;重金属的掺量应该控制在合理的范围内。当重金属的掺量较小时其总孔体积较小,体系较为致密;铬掺入的形式不同对地聚合物体系稳定性的影响也不同,且单掺铬的氧化物或单质可使固化体体系的总孔体积减小,而掺入多种重金属时固化体的平均孔径明显增大。

关键词 无机非金属材料地聚合物重金属抗压强度反应产物孔结构    
Abstract

Fly ash based geopolymer were prepared with fly ash as raw material and several compounds of heavy metals as additives. Then the effect of the type, content and chemical form of the heavy metal on the compressive strength, reaction products, and pore structure of the prepared geopolymers was investigated. The results show that the incorporation of Pb2+、Cr3+ and Cu2+ has great effect on the late compressive strength and results in formation of reinhardbraunsite in the solidified body. Moreover, the Pb2+ reduces the total pore volume of the solidified body, while Cr3+ and Cu2+ increase it. The content of the heavy metal compounds should be controlled within a reasonable range. When the content of the heavy metal compounds is relatively small, the total pore volume is small and the solidified body is much compact. Besides, the different chemical forms of chromium have different effect on the stability of the geopolymers. The single addition of chromium oxide or elemental Cr may reduce the total pore volume of the geopolymers, whereas the average pore size increases obviously for the geopolymers with addition of a variety of other heavy metal compounds.

Key wordsinorganic non-metallic materials    geopolymer    heavy metal    compressive strength    reaction product    pore structure
收稿日期: 2016-09-12     
基金资助:国家自然科学基金(51478328)、上海市自然科学基金(17ZR1442000)和中央高校基本科研业务费专项资金(0500219225)
Na2O MgO Al2O3 SiO2 P2O5 SO3 Fe2O3 K2O CaO TiO2 Loss
0.45 0.85 22.40 40.70 0.71 2.17 5.34 0.69 9.46 1.16 16.09
表1  粉煤灰的化学组成
Na2O MgO Al2O3 SiO2 P2O5 SO3 Cl K2O CaO TiO2 PbO
0.87 1.47 0.47 3.77 12.50 7.22 1.26 0.33 6.78 0.28 0.09
Cr2O3 MnO Fe2O3 CoO NiO CuO ZnO SrO SnO2 Loss
18.40 0.19 23.80 0.16 8.53 4.27 4.26 0.02 0.24 5.09
表2  冶金污泥的化学组成
图1  主要原材料的XRD图谱
Samples Heavy metals Fly ash Heavy metal Alkali activator Water
F - 100.0 - 53.9 1.9
F- Cr(NO3)3 Cr(NO3)3 100.0 1.0 53.9 1.9
F- Pb(NO3)2 Pb(NO3)2 100.0 1.0 53.9 1.9
F- Cu(NO3)2 Cu(NO3)2 100.0 1.0 53.9 1.9
F- Cr(NO3)3-0.5 Cr(NO3)3 100.0 0.5 53.9 1.9
F- Cr(NO3)3-1.0 Cr(NO3)3 100.0 1.0 53.9 1.9
F- Cr(NO3)3-1.5 Cr(NO3)3 100.0 1.5 53.9 1.9
F-Cr(NO3)3 Cr(NO3)3 100.0 1.0 53.9 1.9
F-Cr2O3 Cr2O3 100.0 1.0 53.9 1.9
F- CrO3 CrO3 100.0 1.0 53.9 1.9
F-Cr Cr 100.0 1.0 53.9 1.9
F-MS Metallurgical sludge 100.0 1.0* 53.9 1.9
表3  不同重金属种类、掺量和化学形态下的地聚合物配比
图2  掺入不同种类重金属的地聚合物抗压强度
图3  掺入不同种类重金属的地聚合物的XRD图谱
图4  掺入不同种类重金属地聚合物的孔径分布微分和积分曲线
图5  Cr(NO3)3掺量不同的地聚合物的抗压强度
Samples Total pore volume
/mLg-1
Average diameter
/nm
Pore size distribution / %
<2 nm 2~20 nm 20~50 nm >50 nm
F 0.0511 11.41 0 63.2 23.5 13.3
F-Cr(NO3)3 0.0865 12.19 0 63.2 23.1 13.7
F-Pb(NO3)2 0.0425 12.83 0 62.8 22.9 14.3
F-Cu(NO3)2 0.0611 9.55 0 67.1 21.4 11.5
表4  含不同重金属种类的地聚合物体系的孔结构
图6  重金属掺量不同的地聚合物的XRD图谱
Samples Total pore volume
/mLg-1
Average diameter
/nm
Pore size distribution / %
<2 nm 2~20 nm 20~50 nm >50 nm
F 0.0511 11.41 0 63.2 23.5 13.3
F-Cr(NO3)3-0.5 0.0484 13.23 0 66.5 21.9 11.6
F-Cr(NO3)3-1.0 0.0865 12.19 0 63.2 23.1 13.7
F-Cr(NO3)3-1.5 0.0660 9.59 0 62.1 24.0 13.9
表5  不同重金属掺量下的地聚合物的孔结构
图7  重金属掺量不同的地聚合物孔径分布微分和积分曲线
图8  不同化学形态重金属地聚合物体系的抗压强度
图9  不同化学形态重金属地聚合物的XRD图谱
图10  不同化学形态重金属地聚合物的孔径微分积分曲线
Samples Total pore volume
/mLg-1
Average diameter
/nm
Pore size distribution / %
<2 nm 2~20 nm 20~50 nm >50 nm
F 0.0511 11.41 0 63.2 23.5 13.3
F-Cr(NO3)3 0.0865 12.19 0 63.2 23.1 13.7
F-Cr2O3 0.0426 18.45 0 65.8 15.4 18.8
F-CrO3 0.0378 17.19 0 63.5 16.3 20.2
F-Cr 0.0315 15.34 0 69.7 14.5 15.8
F-MS 0.0231 29.68 0 47.2 31.2 21.6
表6  不同重金属化学形态下的地聚合物的孔结构
[1] Davidovits J.Geopolymer Chemistry and Applications[M]. France: Geopolymer Institute, 2008
[2] Li S.Inorganic polymer-statusin geopolymer material[J]. J. Funct. Mater., 2007, 38: 3549
[2] (李松. 无机聚合物-地聚合物材料的现状[J]. 功能材料, 2007, 38: 3549)
[3] Jin M T.Immobilization of heavy metals in municipal solid waste incineration (MSWI) fly ash with geopolymer [D]. Nanjing: Nanjing University of Science and Technology, 2011
[3] (金漫彤. 地聚合物固化生活垃圾焚烧飞灰中重金属的研究 [D]. 南京: 南京理工大学, 2011)
[4] Van Jaarsveld J G S, Van DeventerJ S J, Lorenzen L. Factors affecting the immobilization of metals in geopolymerized fly ash[J]. Metall. Mater. Trans., 1998, 29B: 283
[5] Zhu Q, Lu D Y.Preparation and compatibility of geopolymer matrix for stabilization/solidification of heavy metal ions[J]. J. Nanjing. Univ. Technol.(Nat. Sci. Ed.), 2010, 32(3): 61
[5] (朱强, 卢都友. 固化重金属离子用地质聚合物基体的制备及其离子相容性[J]. 南京工业大学学报(自然科学版), 2010, 32(3): 61)
[6] Zhang Y S, Sun W, Chen Q L, et al.Synthesis and heavy metal immobilization behaviors of slag based geopolymer[J]. J. Hazard. Mater., 2007, 143: 206
[7] Zhang J L, Provis J L, Feng D W, et al.Geopolymers for immobilization of Cr6+, Cd2+, and Pb2+[J]. J. Hazard. Mater., 2008, 157: 587
[8] Xu J L, Zhou Y L, Chang Q, et al.Study on the factors of affecting the immobilization of heavy metals in fly ash-based geopolymers[J]. Mater. Lett., 2006, 60: 820
[9] Jing M T, Zhang Q, Lou M X, et al.Immobilization of heavy metal ions in fly ashed-geopolymer[J]. Bullet. Chin. Ceram. Soc., 2007, 26: 467
[9] (金漫彤, 张琼, 楼敏晓等. 粉煤灰用于土壤聚合物固化重金属离子的研究[J]. 硅酸盐通报, 2007, 26: 467)
[10] Phair J W, Van Deventer J S J, Smith J D. Effect of Al source and alkali activation on Pb and Cu immobilisation in fly-ash based “geopolymers”[J]. Appl. Geochem., 2004, 19: 423
[11] Everett D H.Manual of symbols and terminology for physicochemical quantities and units, appendix II: Definitions, terminology and symbols in colloid and surface chemistry[J]. Pure Appl. Chem., 1972, 31: 577
[12] Zheng L, Wang W, Shi Y C.The effects of alkaline dosage and Si/Al ratio on the immobilization of heavy metals in municipal solid waste incineration fly ash-based geopolymer[J]. Chemosphere, 2010, 79: 665
[13] Wang X, Yan B L, Wang L, et al.The research on capturing several heavy metal irons and its stability of C-S-H with different Ca/Si[J]. Bullet. Chin. Ceram. Soc., 2012, 31: 1356
[13] (王昕, 颜碧兰, 汪澜等. 不同钙硅比C-S-H对多种重金属离子的俘获及其稳定性[J]. 硅酸盐通报, 2012, 31: 1356)
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 李海龙, 牟娟, 王媛媛, 葛绍璠, 刘春明, 张海峰, 朱正旺. MnNiCoCrFe多孔高熵合金的电催化析氧性能[J]. 材料研究学报, 2023, 37(5): 332-340.
[7] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[8] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[9] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[10] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[11] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[12] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[13] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[14] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[15] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.