Please wait a minute...
Chinese Journal of Materials Research  2024, Vol. 38 Issue (11): 837-848    DOI: 10.11901/1005.3093.2024.176
ARTICLES Current Issue | Archive | Adv Search |
Research on the Degradation Performance of Azo Dyes for MoFe-based Amorphous Alloy Wires
HE Wang, CHEN Yanan, TANG Meifang, GAO Wenjun, SU Chen, GUO Shengfeng()
School of Materials and Energy, Southwest University, Chongqing 400715, China
Cite this article: 

HE Wang, CHEN Yanan, TANG Meifang, GAO Wenjun, SU Chen, GUO Shengfeng. Research on the Degradation Performance of Azo Dyes for MoFe-based Amorphous Alloy Wires. Chinese Journal of Materials Research, 2024, 38(11): 837-848.

Download:  HTML  PDF(14664KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Mo-based amorphous alloys show excellent degradation performance and thermal stability in the field of dye wastewater degradation, and have efficient catalytic reactivity over a wide pH range. This paper successfully prepared novel MoFe-based (Mo51Co17Fe17B15 and Mo51Fe34B15) amorphous alloy wires using the melt-spinning method. This further enhanced the catalytic activity of Mo-based amorphous alloys in extremely acidic media, and investigated the degradation performance of the two amorphous wire materials towards crystal violet solution and its reaction mechanism. The results show that Mo51Co17Fe17B15 and Mo51Fe34B15 amorphous alloy wires can completely degrade crystal violet solution with pH 2~9. The degradation efficiency of Mo51Fe34B15 is higher than that of Mo51Co17Fe17B15, and the time required for the former to reach the same degradation degree is only 1/2 of the latter. In addition, the Mo51Fe34B15 amorphous alloy wires have a higher self-corrosion potential and lower corrosion current density, superior corrosion resistance and a higher surface Fe2+ content, which is conducive to providing a large number of electron transfer basis for the catalytic degradation process. The suitable corrosion behavior and faster electron transfer ability are the key reasons for its superior degradation performance.

Key words:  metallic materials      Mo-based amorphous alloy      amorphous alloy wires      dye wastewater      catalytic degradation     
Received:  17 April 2024     
ZTFLH:  TQ426.83  
Fund: National Natural Science Foundation of China(52071276);Fundamental Research Funds for the Central Universities(SWU-XDJH202313)
Corresponding Authors:  GUO Shengfeng, Tel: 13500330725, E-mail: sfguo@swu.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2024.176     OR     https://www.cjmr.org/EN/Y2024/V38/I11/837

Fig.1  XRD pattern (a) and DSC curve (b) of Mo51Co17-Fe17B15 and Mo51Fe34B15 amorphous alloy wires
Fig.2  UV-Vis absorption profiles of Mo51Co17Fe17B15 (a) and Mo51Fe34B15 (b) amorphous alloy wires degradation Crystal Violet solutions (Room temperature, natural pH, 20 × 10-6 crystal violet solution, 0.1 mol/L H2O2)
Fig.3  Mo51Co17Fe17B15 (a) and Mo51Fe34B15 amorphous (b) alloy wires in different pH values to degrade the normalized concentration of crystal violet solution (Room temperature, 20 × 10-6 crystal violet solution, 0.1 mol/L H2O2) and applicable pH and reaction rate constant kobs (c) of different amorphous alloy catalysts for azo dye wastewater degradation[24~30]
Fig.4  Mo51Co17Fe17B15 (a) and Mo51Fe34B15 amorphous (b) alloy wires at different temperatures to degrade the normalized concentration of crystal violet solution; reaction rate constant kobs (c) and reaction activation energy Ea (d) (pH = 2, 20 × 10-6 crystal violet solution, 0.1 mol/L H2O2)
Fig.5  Mo51Co17Fe17B15 (a) and Mo51Fe34B15 (b) amorphous alloy wires of different H2O2 addition to degrade the normalized co-ncentration of crystal violet solution and Reaction rate constant kobs (c) (303 K, pH = 2, 20 × 10-6 crystal violet solution)
Fig.6  Mo51Co17Fe17B15 (a) and Mo51Fe34B15 (b) amorphous alloy wires to degrade the normalized concentration of crystal violet solution with different initial concentrations and reaction rate constant kobs (c) and degradation efficiency (η = (1-Ct/C0) ×100%) (d) (313 K, pH = 2, 0.1 mol/L H2O2)
Fig.7  Cyclic stability of (a) Mo51Co17Fe17B15 and Mo51-Fe34B15 (b) amorphous alloy wires (at room temperature, pH = 2, 20 × 10-6 crystal violet solution, 0.1 mol/L H2O2)
Fig.8  Electrochemical behavior of Mo51Co17Fe17B15 and Mo51Fe34B15 amorphous alloys in Crystal Violet solutions (a) polarization curve, (b) Nyquist plots derived from EIS measurements, illustration: Impedance frequency diagram. (room temperature, natural pH, 20 × 10-6 crystal violet solution, 0.1 mol/L H2O2)
Fig.9  Surface morphologies of Mo51Co17Fe17B15 (a) and Mo51Fe34B15 (b) amorphous alloy wires before and after degradation of azo dye wastewater (Room temperature, natural pH, 20 × 10-6 crystal violet solution, 0.1 mol/L H2O2)
Fig.10  Surface EDS spectra of Mo51Co17Fe17B15 (a) and Mo51Fe34B15 (b) amorphous alloy wires after degradation of dye wastewater (Room temperature, natural pH, 20 × 10-6 crystal violet solution, 0.1 mol/L H2O2)
Fig.11  Surface XPS results of amorphous alloy wires after degradation of azo dye wastewater by Mo51Co17Fe17B15 (a) and Mo51Fe34B15 (b) (Room temperature, natural pH, 20 × 10-6 crystal violet solution, 0.1 mol/L H2O2)
Fig.12  Schematic diagram of degradation mechanism of crystal violet dye wastewater by Mo51Co17Fe17B15 and Mo51Fe34B15 amorphous alloy wires
1 Selvaraj V, Swarna Karthika T, Mansiya C, et al. An over review on recently developed techniques, mechanisms and intermediate involved in the advanced azo dye degradation for industrial applications [J]. J. Mol. Struct., 2021, 1224: 129195
2 Zhang C J, Chen H, Xue G, et al. A critical review of the aniline transformation fate in azo dye wastewater treatment [J]. J. Clean. Prod., 2021, 321: 128971
3 Wang Y, Zhang H, Chang N, et al. Preparation of acid-alkali modified coal fly ash adsorbent and its removal performance on dyes [J]. Chin. J. Mater. Res., 2023, 38(5): 379
王 琰, 张 昊, 常 娜 等. 酸-碱改性粉煤灰吸附剂的制备及其对染料的去除性能 [J]. 材料研究学报, 2023, 38(5): 379
4 Yu M X, Kuai L, Wang L, et al. Synthesis of N-doped hierarchical porous carbon and its adsorption capacity for acid orange 74 [J]. Chin. J. Mater. Res., 2021, 35(9): 667
doi: 10.11901/1005.3093.2020.427
余谟鑫, 蒯 乐, 王 亮 等. 吲哚基掺氮分级多孔炭的制备及其对酸性橙74的吸附性能 [J]. 材料研究学报, 2021, 35(9): 667
doi: 10.11901/1005.3093.2020.427
5 Zhang H, Li F, Chang N, et al. Preparation of carboxylic acid grafted starch adsorption resin and its dye removal performance [J]. Chin. J. Mater. Res., 2021, 35(6): 419
doi: 10.11901/1005.3093.2020.279
张 昊, 李 帆, 常 娜 等. 羧酸型接枝淀粉吸附树脂的制备和对染料的去除性能 [J]. 材料研究学报, 2021, 35(6): 419
6 Zhang X Y, Zhang Q Y, Tang T, et al. Fabrication of composite material based on MOFs and its adsorption properties for methylene blue dyes [J]. Chin. J. Mater. Res., 2021, 35(11): 866
doi: 10.11901/1005.3093.2021.002
张向阳, 章奇羊, 汤 涛 等. 基于MOFs的复合材料制备及其对亚甲基蓝染料的吸附性能 [J]. 材料研究学报, 2021, 35(11): 866
doi: 10.11901/1005.3093.2021.002
7 Zhang L C, Jia Z, Lyu F, et al. A review of catalytic performance of metallic glasses in wastewater treatment: Recent progress and prospects [J]. Prog. Mater. Sci., 2019, 105: 100576
8 Pei L F, Zhang X Y, Yuan Z Z. Application of Fe-based amorphous alloy in industrial wastewater treatment: a review [J]. J. Renew. Mater., 2022, 10(4): 969
9 Wang J Q, Liu Y H, Chen M W, et al. Rapid degradation of azo dye by Fe-based metallic glass powder [J]. Adv. Funct. Mater., 2012, 22(12): 2567
10 Xie S H, Xie Y L, Kruzic J J, et al. The pivotal role of boron in improving the azo dye degradation of glassy Fe-based catalysts [J]. ChemCatChem, 2020, 12(3): 750
11 Wang R W, Liu J, Gan Z H, et al. Crystallization kinetics of amorphous alloys Fe73.5Si13.5- x Ge x B9Cu1Nb3 (x = 3, 6) [J]. Chin. J. Mater. Res., 2014, 28(3): 204
汪汝武, 刘 静, 甘章华 等. Fe73.5Si13.5- x Ge x B9Cu1Nb3 (x = 3, 6)非晶合金的结晶动力学 [J]. 材料研究学报, 2014, 28(3): 204
doi: 10.11901/1005.3093.2013.603
12 Wang J M, Hu Q, Yang Y H, et al. Influence of Co and Ni on invar effect of (Fe71.2B24Y4.8)96Nb4 bulk metallic glass [J]. Chin. J. Mater. Res., 2018, 32(9): 691
王金苗, 胡 强, 严意宏 等. Co和Ni对(Fe71.2B24Y4.8)96Nb4块体非晶合金因瓦效应的影响 [J]. 材料研究学报, 2018, 32(9): 691
doi: 10.11901/1005.3093.2018.115
13 Chen F, Zhou Y, Chen Y N, et al. Fabrication of nano-porous Co by dealloying for supercapacitor and azo-dye degradation [J]. Chin. J. Mater. Res., 2020, 34(12): 905
doi: 10.11901/1005.3093.2020.443
陈 峰, 周 洋, 陈彦南 等. 脱合金制备纳米多孔Co及其超级电容器和对偶氮染料的降解性能 [J]. 材料研究学报, 2020, 34(12):905
14 Shen Y L, Li B G. Preparation of magnetic amino acid-functionalized aluminum alginate gel polymer and its super adsorption on azo dyes [J]. Chin. J. Mater. Res., 2022, 36(3): 220
doi: 10.11901/1005.3093.2021.163
申延龙, 李北罡. 磁性氨基酸功能化海藻酸铝凝胶聚合物的制备及对偶氮染料的超强吸附 [J]. 材料研究学报, 2022, 36(3):220
doi: 10.11901/1005.3093.2021.163
15 Shi J L, Sheng M Q, Wu Q, et al. Preparation of electrode materials of amorphous Co-W-B/Carbon cloth composite and their electro-catalytic performance for electrolysis of water [J]. Chin. J. Mater. Res., 2020, 34(4): 263
doi: 10.11901/1005.3093.2019.397
施嘉伦, 盛敏奇, 吴 琼 等. 非晶Co-W-B/碳布复合电极材料的制备及其电解水催化性能 [J]. 材料研究学报, 2020, 34(4): 263
doi: 10.11901/1005.3093.2019.397
16 Zhang Z L, Wang S Q, Xu B L, et al. Electrocatalytic oxygen evolution performance of high entropy FeCoNiMoCr alloy thin film electrode [J]. Chin. J. Mater. Res., 2021, 35(3): 193
doi: 10.11901/1005.3093.2020.233
张泽灵, 王世琦, 徐邦利 等. FeCoNiMoCr高熵合金薄膜电极的电催化析氧性能 [J]. 材料研究学报, 2021, 35(3): 193
doi: 10.11901/1005.3093.2020.233
17 Wang J Q, Liu Y H, Chen M W, et al. Excellent capability in degrading azo dyes by MgZn-based metallic glass powders [J]. Sci. Rep., 2012, 2(1): 418
18 Jia Z, Kang J, Zhang W C, et al. Surface aging behaviour of Fe-based amorphous alloys as catalysts during heterogeneous photo Fenton-like process for water treatment [J]. Appl. Catal. B Environ., 2017, 204: 537
19 Tang M F, Lai L M, Ding D Y, et al. Rapid degradation of direct blue dye by Co-based amorphous alloy wire [J]. J. Non-Cryst. Solids, 2022, 576: 121282
20 Tang M F, Lai L M, Su C, et al. MoCoB metallic glass microwire catalysts for highly efficient and pH-universal degradation of wastewater [J]. npj Mater. Degrad., 2023, 7(1): 73
21 Lin B, Bian X F, Wang P, et al. Application of Fe-based metallic glasses in wastewater treatment [J]. Mater. Sci. Eng. B, 2012, 177(1): 92
22 Zhang C Q, Zhang H F, Lv M Q, et al. Decolorization of azo dye solution by Fe-Mo-Si-B amorphous alloy [J]. J. Non-Cryst. Solids, 2010, 356(33-34): 1703
23 Wang X F, Pan Y, Zhu Z R, et al. Efficient degradation of rhodamine B using Fe-based metallic glass catalyst by Fenton-like process [J]. Chemosphere, 2014, 117: 638
pmid: 25461929
24 Chen S Q, Yang G N, Luo S T, et al. Unexpected high performance of Fe-based nanocrystallized ribbons for azo dye decomposi-tion [J]. J. Mater. Chem. A, 2017, 5(27): 14230
25 Deng Z, Zhang C, Liu L. Chemically dealloyed MgCuGd metallic glass with enhanced catalytic activity in degradation of phenol [J]. Intermetallics, 2014, 52: 9
26 Hou L, Wang Q Q, Fan X D, et al. Effect of Co addition on catalytic activity of FePCCu amorphous alloy for methylene blue degradation [J]. New J. Chem., 2019, 43(16): 6126
27 Li Z K, Qin X D, Zhu Z W, et al. Cu-based metallic glass with robust activity and sustainability for wastewater treatment [J]. J. Mater. Chem. A, 2020, 8(21): 10855
28 Turnbull D. Under what conditions can a glass be formed? [J]. Contemp. Phys., 1969, 10(5): 473
29 Wang P, Bian X F, Li Y X. Catalytic oxidation of phenol in wastewater — A new application of the amorphous Fe78Si9B13 alloy [J]. Chin. Sci. Bull., 2012, 57(1): 33
30 Zhao B W, Zhu Z W, Qin X D, et al. Highly efficient and stable CuZr-based metallic glassy catalysts for azo dye degradation [J]. J. Mater. Sci. Technol., 2020, 46: 88
doi: 10.1016/j.jmst.2019.12.012
31 Zhang C Q, Zhang H F, Lv M Q, et al. Decolorization of azo dye solution by Fe-Mo-Si-B amorphous alloy [J]. J. Non-Cryst. Solids, 2010, 356(33-34): 1703
32 Zhang C Q, Zhu Z W, Zhang H F. Effects of the addition of Co, Ni or Cr on the decolorization properties of Fe-Si-B amorphous all-oys [J]. J. Phys. Chem. Solids, 2017, 110: 152
33 Yang C, Zhang C, Chen Z J, et al. Three-dimensional hierarchical porous structures of metallic glass/copper composite catalysts by 3D printing for efficient wastewater treatments [J]. ACS Appl. Mater. Interfaces, 2021, 13(6): 7227
[1] LI Peiyue, ZHANG Minghui, SUN Wentao, BAO Zhihao, GAO Qi, WANG Yanzhi, NIU Long. Effect of Ce and La on Microstructure and Mechanical Properties of Al-Zn Alloy[J]. 材料研究学报, 2024, 38(9): 651-658.
[2] WANG Xiaofeng, TAN Wei, FENG Guangming, LIU Jibo, LIU Xianbin, LU Han. Effect of Fe-rich Phase on Mechanical Properties of Al-Mg-Si Alloy[J]. 材料研究学报, 2024, 38(9): 701-710.
[3] SHAO Xia, BAO Mengfan, CHEN Shijie, LIN Na, TAN Jie, MAO Aiqin. Preparation and Lithium Storage Performance of Spinel-type Cobalt-free (Cr0.2Fe0.2Mn0.2Ni0.2X0.2)3O4 High-entropy Oxide[J]. 材料研究学报, 2024, 38(9): 680-690.
[4] CEN Yaodong, JI Chunjiao, BAO Xirong, WANG Xiaodong, CHEN Lin, DONG Rui. Stress-Strain Field at the Fatigue Crack Tip of Pearlite Heavy Rail Steel[J]. 材料研究学报, 2024, 38(9): 711-720.
[5] YIN Yifeng, LU Zhengguan, XU Lei, WU Jie. Hot Isostatic Pressing of GH4099 Alloy Powders and Preparation of Thin-walled Cylinders[J]. 材料研究学报, 2024, 38(9): 669-679.
[6] LIU Qing'ao, ZHANG Weihong, WANG Zhiyuan, SUN Wenru. Low-cycle Fatigue Behavior of a Cast Ni-based Superalloy K4169 at 650oC[J]. 材料研究学报, 2024, 38(8): 621-631.
[7] LOU Weidong, ZHAO Haidong, WANG Guo. Softening Behavior of H13 Steel by Thermal Cycling between Molten ADC12 Al-alloy and Spray Cooling Chamber[J]. 材料研究学报, 2024, 38(8): 593-604.
[8] LIU Shuo, ZHANG Peng, WANG Bin, WANG Kaizhong, XU Zikuan, HU Fangzhong, DUAN Qiqiang, ZHANG Zhefeng. Investigations on Strength-Toughness Relationship and Low Temperature Brittleness of High-speed Railway Axle Steel DZ2[J]. 材料研究学报, 2024, 38(8): 561-568.
[9] ZHANG Wei, ZHANG Jie. Toughening Mechanism of B4C-Al2O3 Composite Ceramics[J]. 材料研究学报, 2024, 38(8): 614-620.
[10] WANG Jinlong, WANG Huiming, LI Yingju, ZHANG Hongyi, LV Xiaoren. Pore Feature and Cracking Behavior of Cold-sprayed Al-based Composite Coatings under Reciprocating Friction[J]. 材料研究学报, 2024, 38(7): 481-489.
[11] PENG Wenfei, HUANG Qiaodong, Moliar Oleksandr, DONG Chaoqi, WANG Xiaofeng. Effect of Heat Treatment on Mechanical Properties of a Novel Ti-6Al-2Mo-2V-3Nb-2Fe-1Zr Alloy[J]. 材料研究学报, 2024, 38(7): 519-528.
[12] WANG Lijia, XU Junyi, HU Li, MIAO Tianhu, ZHAN Sha. Effect of Cryogenic Treatment on Mechanical Behavior of AZ31 Mg Alloy Sheet with Bimodal Non-basal Texture at Room Temperature[J]. 材料研究学报, 2024, 38(7): 499-507.
[13] YUAN Xinzhong, WANG Cunjing, YAO Peng, LI Qiong, MA Zhihua, LI Pengfa. Preparation of N and O Co-doped Carbon Materials by Salt Sealing Method for Electrode of Supercapacitors[J]. 材料研究学报, 2024, 38(7): 529-536.
[14] CHEN Shijie, BAO Mengfan, LIN Na, YANG Haiqin, MAO Aiqin. Effect of Zn Content on Lithium Storage Properties of Rock Salt Type High Entropy Oxides[J]. 材料研究学报, 2024, 38(7): 508-518.
[15] YANG Pu, DENG Hailong, KANG Heming, LIU Jie, KONG Jianhang, SUN Yufan, YU Huan, CHEN Yu. Evaluation of Slip-cleavage Competition Failure Mechanisms for Titanium Alloys Induced by Microstructure in Very-high-cycle Fatigue Regime[J]. 材料研究学报, 2024, 38(7): 537-548.
No Suggested Reading articles found!