Please wait a minute...
Chinese Journal of Materials Research  2024, Vol. 38 Issue (11): 828-836    DOI: 10.11901/1005.3093.2023.614
ARTICLES Current Issue | Archive | Adv Search |
Preparation and Performance of S/NiFeP/KB Composites Electrocatalyst for Lithium Sulfur Batteries
WU Jing, ZHANG Ziyi, HAN Xu, HOU Xingyan, LI Xueyan, LI Shasha, LIU Wen, LI Peng()
Taiyuan University of Science and Technology, College of Engineering and Technology, Taiyuan 030024, China
Cite this article: 

WU Jing, ZHANG Ziyi, HAN Xu, HOU Xingyan, LI Xueyan, LI Shasha, LIU Wen, LI Peng. Preparation and Performance of S/NiFeP/KB Composites Electrocatalyst for Lithium Sulfur Batteries. Chinese Journal of Materials Research, 2024, 38(11): 828-836.

Download:  HTML  PDF(8910KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Transition metal phosphide has not only metal-like conductive properties but good adsorption and catalytic conversion of polysulfide lithium. In this paper, the NiFeP/KB electrocatalyst grown by 2D nanosheet NiFeP on Ketjen Black ECP-600JD carbon black (KB) was prepared. The S/NiFeP/KB cathode material was obtained by mixing the nano sulfur particles with NiFeP/KB in a proportional and uniform way. Due to the synergistic effect of metal doping and hierarchical structure, the electrode prepared using S/NiFeP/KB material had a specific capacity of 1454.5 mAh/g at 0.1C for the first discharge, which remained 821.1 mAh/g after 200 cycles, 639.9 mAh/g after 300 cycles at 2C, and the capacity retention rate reached 74.7%. Further combined with CV and EIS tests, the NiFeP/KB electrocatalyst can effectively improve the oxidation and reduction reaction rate of lithium polysulfide in the battery, thus promoting the reaction kinetics of lithium and sulfur.

Key words:  composite      lithium-sulfur battery      bimetallic phosphide      NiFeP      Nano-sulfur particles      electrocatalyst     
Received:  27 December 2023     
ZTFLH:  TM911  
Fund: National Natural Science Foundation of China(22278251);Innovation and Entrepreneurship Trai-ning Program for College Students(202210109013)
Corresponding Authors:  LI Peng, Tel: 13466816621, E-mail: lipeng_ty@tyust.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2023.614     OR     https://www.cjmr.org/EN/Y2024/V38/I11/828

Fig.1  Synthesis schematic of NiFeP/K B (a), SEM of NiFe-LDH (b, d), SEM of NiFeP (c) and SEM of NiFeP/KB (e)
Fig.2  SEM of sulfur nanoparticles (a) and SEM of S/NiFeP/KB (b)
Fig.3  XRD patterns of NiFe-LDH/KB and NiFeP/KB
Fig.4  XPS pattern of NiFeP/KB (a), fine energy spectrum of Ni 2p (b) and Fe 2p (c) and track spectrum of P 2p (d)
Fig.5  N2 adsorption/desorption (a) and pore size distribution curves of NiFeP/KB and S/NiFeP/KB (b) and TGA curves of S/NiFeP/KB and S/KB (c)
Fig.6  Cycle performances of S/NiFeP/KB and S/KB at 0.1C (a), rate performances of S/NiFeP/KB and S/KB (b), the initial charge/discharge curve of S/NiFeP/KB (c) and cycle performances of S/NiFeP/KB (d)
Fig.7  Initial CV curves of S/NiFeP/KB and S/KB at 0.1 mV/s (a), CV curves of S/NiFeP/KB at 0.1 mV/s for four cycles (b), EIS of S/NiFeP/KB and S/KB (c)
Fig.8  CV curves of S/NiFeP/KB (a) and KB/S (b) with different scan rates and linear fits of A, B and C peak currents for S/NiFeP/KB and KB/S (c)
1 Cao Y L, Li M, Lu J, et al. Bridging the academic and industrial metrics for next-generation practical batteries [J]. Nat. Nanotechnol., 2019, 14(3): 200
doi: 10.1038/s41565-019-0371-8 pmid: 30778215
2 Liu J, Bao Z A, Cui Y, et al. Pathways for practical high-energy long-cycling lithium metal batteries [J]. Nat. Energy, 2019, 4(3): 180
doi: 10.1038/s41560-019-0338-x
3 Fang D L, Sun P, Huang S Z, et al. An exfoliation-evaporation strategy to regulate N coordination number of Co single-atom catalysts for high- performance lithium-sulfur batteries [J]. ACS Mater. Lett., 2022, 4(1): 1
4 Peng H J, Huang J Q, Cheng X B, et al. Review on high‐loading and high‐energy lithium-sulfur batteries [J]. Adv. Energy Mater., 2017, 7(24): 1700260
5 Song Y, Li X Y, He C Z. Porous carbon framework nested nickel foam as freestanding host for high energy lithium sulfur batteries [J]. Chin. Chem. Lett., 2021, 32(3): 1106
6 Wang R R, Wu R B, Yan X X, et al. Implanting single Zn atoms coupled with metallic Co nanoparticles into porous carbon nanosheets grafted with carbon nanotubes for high-performance lithium-sulfur batteries [J]. Adv. Funct. Mater., 2022, 32(20): 2200424
7 Zou Q L, Lu Y C. Liquid electrolyte design for metal‐sulfur batteries: mechanistic understanding and perspective [J]. EcoMat, 2021, 3(4): e12115
8 Fan X J, Sun W W, Meng F C, et al. Advanced chemical strategies for lithium-sulfur batteries: a review [J]. Green Energy Environ., 2018, 3(1): 2
9 Pang Q, Liang X, Kwok C Y, et al. Advances in lithium-sulfur batteries based on multifunctional cathodes and electrolytes [J]. Nat. Energy, 2016, 1(9): 16132
10 Peng H J, Huang J Q, Zhang Q. A review of flexible lithium-sulfur and analogous alkali metal-chalcogen rechargeable batteries [J]. Chem. Soc. Rev., 2017, 46(17): 5237
11 Seh Z W, Sun Y M, Zhang Q F, et al. Designing high-energy lithium-sulfur batteries [J]. Chem. Soc. Rev., 2016, 45(20): 5605
pmid: 27460222
12 Yue J P, Yan M, Yin Y X, et al. Progress of the interface design in all-solid-state Li-S batteries [J]. Adv. Funct. Mater., 2018, 28(38): 1707533
13 Chen Y, Wang T Y, Tian H J, et al. Advances in lithium-sulfur batteries: from academic research to commercial viability [J]. Adv. Mater., 2021, 33(29): 2003666
14 Chen Y, Zhang W X, Zhou D, et al. Co-Fe mixed metal phosphide nanocubes with highly interconnected-pore architecture as an efficient polysulfide mediator for lithium-sulfur batteries [J]. ACS Nano, 2019, 13(4): 4731
doi: 10.1021/acsnano.9b01079 pmid: 30924635
15 Deng C, Wang Z W, Feng L L, et al. Electrocatalysis of sulfur and polysulfides in Li-S batteries [J]. J. Mater. Chem. A, 2020, 8(38): 19704
16 Du M, Wang X Y, Geng P B, et al. Polypyrrole-enveloped Prussian blue nanocubes with multi-metal synergistic adsorption toward lithium polysulfides: high-performance lithium-sulfur batteries [J]. Chem. Eng. J., 2021, 420: 130518
17 Hong X D, Wang R, Liu Y, et al. Recent advances in chemical adsorption and catalytic conversion materials for Li-S batteries [J]. J. Energy Chem., 2020, 42: 144
doi: 10.1016/j.jechem.2019.07.001
18 Jana M, Xu R, Cheng X B, et al. Rational design of two-dimensional nanomaterials for lithium-sulfur batteries [J]. Energy Environ. Sci., 2020, 13(4): 1049
19 Lei J, Liu T, Chen J J, et al. Exploring and understanding the roles of Li2S n and the strategies to beyond present Li-S batteries [J]. Chem., 2020, 6(10): 2533
20 Liu D H, Zhang C, Zhou G M, et al. Catalytic effects in lithium-sulfur batteries: promoted sulfur transformation and reduced shuttle effect [J]. Adv. Sci., 2018, 5(1): 1700270
21 Chen Z C, Fang R Y, Liang C, et al. Recent progress in sulfur cathode for Li-S batteries [J]. Mater. Rep., 2018, 32(9): 1401
陈子冲, 方如意, 梁 初 等. 锂硫电池硫正极材料研究进展 [J]. 材料导报, 2018, 32(9): 1401
22 Al Salem H, Babu G, Rao C V, et al. Electrocatalytic polysulfide traps for controlling redox shuttle process of Li-S batteries [J]. J. Am. Chem. Soc., 2015, 137(36): 11542
doi: 10.1021/jacs.5b04472 pmid: 26331670
23 Tao X Y, Wang J G, Liu C, et al. Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium-sulfur battery design [J]. Nat. Commun., 2016, 7(1): 11203
24 Seh W Z, Li W Y, Cha J J, et al. Sulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries [J]. Nat. Commun., 2013, 4(1): 1331
25 Zhao W W, Wang Y F, Duan D H, et al. Application of layered Co3O4/C derived from metal-organic framework in lithium-sulfur batteries [J]. Mater. Rep., 2022, 36(6): 20120263
赵文文, 王韵芳, 段东红 等. 金属有机骨架衍生的层状Co3O4/C在锂硫电池中的应用 [J]. 材料导报, 2022, 36(6): 20120263
26 Chen T, Ma L B, Cheng B R, et al. Metallic and polar Co9S8 inlaid carbon hollow nanopolyhedra as efficient polysulfide mediator for lithium-sulfur batteries [J]. Nano Energy, 2017, 38: 239
27 Cheng Z B, Xiao Z B, Pan H, et al. Elastic sandwich‐type rGO-VS2/S composites with high tap density: structural and chemical cooperativity enabling lithium-sulfur batteries with high energy density [J]. Adv. Energy Mater., 2018, 8(10): 1702337
28 Wang X L, Zhou N, Tian Y W, et al. SnS2/ZIF-8 derived two-dimensional porous nitrogen-doped carbon nanosheets for lithium-sulfur batteries [J]. J. Inorg. Mater., 2023, 38: 938
王新玲, 周 娜, 田亚文 等. SnS2/ZIF-8衍生二维多孔氮掺杂碳纳米片复合材料的锂硫电池性能研究 [J]. 无机材料学报, 2023, 38: 938
29 Guang Z X, Huang Y, Chen X F, et al. Three-dimensional P-doped carbon skeleton with built-in Ni2P nanospheres as efficient polysulfides barrier for high-performance lithium-sulfur batteries [J]. Electrochim. Acta, 2019, 307: 260
30 Huang S, Huixiang E, Yang Y, et al. Transition metal phosphides: new generation cathode host/separator modifier for Li-S batter-ies [J]. J. Mater. Chem. A, 2021, 9(12): 7458
31 Huang S Z, Von Lim Y, Zhang X M, et al. Regulating the polysulfide redox conversion by iron phosphide nanocrystals for high-rate and ultrastable lithium-sulfur battery [J]. Nano Energy, 2018, 51: 340
32 Du Z Z, Chen X J, Hu W, et al. Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium-sulfur batteries [J]. J. Am. Chem. Soc., 2019, 141(9): 3977
doi: 10.1021/jacs.8b12973 pmid: 30764605
33 Ma L B, Yuan H, Zhang W J, et al. Porous-shell vanadium nitride nanobubbles with ultrahigh areal sulfur loading for high-capacity and long-life lithium-sulfur batteries [J]. Nano Lett., 2017, 17(12): 7839
doi: 10.1021/acs.nanolett.7b04084 pmid: 29182880
34 Jin G Y, He H C, Wu J, et al. Cobalt-doped hollow carbon framework as sulfur host for the cathode of lithium sulfur battery [J]. J. Inorg. Mater., 2021, 36(2): 203
doi: 10.15541/jim20200161
35 Wang J N, Jin J, Wen Z Y. Application of separators modified by carbon nanospheres enriched with α-MoC1- x nanocrystalline in lithium sulfur batteries [J]. J. Inorg. Mater., 2020, 35(5): 532
王佳宁, 靳 俊, 温兆银. α-MoC1- x 纳米晶富集碳球修饰隔膜对锂硫电池性能的影响 [J]. 无机材料学报, 2020, 35(5): 532
doi: 10.15541/jim20190237
36 Liu G L, Wang W M, Zeng P, et al. Strengthened d-p orbital hybridization through asymmetric coordination engineering of single-atom catalysts for durable lithium-sulfur batteries [J]. Nano Lett., 2022, 22(15): 6366
37 Wang X, Zhang D, Du F. Recent progress of single-atom catalytic materials for lithium-sulfur batteries [J]. Chin. J. Appl. Chem., 2022, 39(4): 513
王 欣, 张 冬, 杜 菲. 单原子催化剂在锂硫电池中的研究进展 [J]. 应用化学, 2022, 39(4): 513
38 Hu K, Guo J, Zhang M G, et al. Application of metal compounds in cathode materials and interlayers for lithium-sulfur batteries [J]. Mater. Rep., 2022, 36(19): 21010010
胡 坤, 郭 锦, 张敏刚 等. 金属化合物在锂硫电池正极材料及夹层中的应用 [J]. 材料导报, 2022, 36(19): 21010010
39 Chai L L, Ye H Z, Hu Z G, et al. Tuning the architecture of hierarchical porous CoNiO2 nanosheet for enhanced performance of Li-S batteries [J]. Batteries, 2022, 8(12): 262
40 Liu J B, Song Y F, Lin C J, et al. Regulating Li+ migration and Li2S deposition by metal-organic framework-derived Co4S3-embedded carbon nanoarrays for durable lithium-sulfur batteries [J]. Sci. China Mater., 2022, 65(4): 947
41 Liu J B, Hu C C, Li H P, et al. Novel Ni/Ni2P@C hollow heterostructure microsphere as efficient sulfur hosts for high-performance lithium-sulfur batteries [J]. J. Alloys Compd., 2021, 871: 159576
42 Shen J D, Xu X J, Liu J, et al. Mechanistic understanding of metal phosphide host for sulfur cathode in high-energy-density lithium-sulfur batteries [J]. ACS Nano, 2019, 13(8): 8986
doi: 10.1021/acsnano.9b02903 pmid: 31356051
43 Zhong Y R, Yin L C, He P, et al. Surface chemistry in cobalt phosphide-stabilized lithium-sulfur batteries [J]. J. Am. Chem. Soc., 2018, 140(4): 1455
doi: 10.1021/jacs.7b11434 pmid: 29309139
44 Zhou J B, Liu X J, Zhu L Q, et al. Deciphering the modulation essence of p bands in Co-based compounds on Li-S chemistry [J]. Joule, 2018, 2(12): 2681
45 Wang L, Wang B J, Fan M H, et al. Unraveling the structure and composition sensitivity of transition metal phosphide toward catalytic performance of C2H2 semi-hydrogenation [J]. J. Catal., 2022, 416: 112
46 Shen Z H, Cao M Q, Zhang Z L, et al. Efficient Ni2Co4P3 nanowires catalysts enhance ultrahigh‐loading lithium-sulfur conversion in a microreactor‐like battery [J]. Adv. Funct. Mater., 2020, 30(3): 1906661
47 Xia W L, Han M Y, Chen Y F, et al. NiFeP anchored on rGO as a multifunctional interlayer to promote the redox kinetics for Li-S batteries via regulating d-bands of Ni-based phosphides [J]. ACS Sustain. Chem. Eng., 2023, 11(5): 1742
48 Yang Q, Wei X J, Cao X, et al. Unveiling the synergistic catalysis essence of trimetallic Fe-Co-Ni phosphides for lithium-sulfur chemistry [J]. Chem. Eng. J., 2023, 452: 139638
49 Tang K, Wang X F, Wang M F, et al. Ni/Fe ratio dependence of catalytic activity in monodisperse ternary nickel iron phosphide for efficient water oxidation [J]. ChemElectroChem, 2017, 4(9): 2150
50 Zhou J L, Zhao Z X, Wu T Y, et al. Efficient catalytic conversion of polysulfides in multifunctional FeP/Carbon cloth interlayer for high capacity and stability of lithium-sulfur batteries [J]. Acta Chim. Sin., 2023, 81(4): 351
周俊粮, 赵振新, 武庭毅 等. 多功能磷化铁碳布(FeP/CC)中间层高效催化多硫化物实现锂硫电池的高容量与高稳定性 [J]. 化学学报, 2023, 81(4): 351
doi: 10.6023/A23010010
[1] CUI Sikai, FU Guangyan, LIN Lihai, YAN Yukun, LI Chusen. Preparation Process and Reaction Mechanism of Silicon Carbide Absorbing Materials by In-situ Reaction Method at High Temperature[J]. 材料研究学报, 2024, 38(9): 659-668.
[2] ZHANG Hengyu, HUANG Zhaodan, DUAN Tigang, WEN Qing, LI Ruocan, WU Houran, MA Li, ZHANG Haibing. Electrocatalytic Oxygen Reduction of Carbon-based Hierarchical Pt@Co Composite Catalytic Cathode in Natural Seawater[J]. 材料研究学报, 2024, 38(8): 632-640.
[3] ZHANG Wei, ZHANG Jie. Toughening Mechanism of B4C-Al2O3 Composite Ceramics[J]. 材料研究学报, 2024, 38(8): 614-620.
[4] HUANG Wenzhan, CHEN Yao, CHEN Peng, ZHANG Yujie, CHEN Xingyu. Stability of Pore Structure of ZL102 Al-alloy Foam Prepared by Secondary Foaming Method[J]. 材料研究学报, 2024, 38(8): 605-613.
[5] TAN Shangrong, YAO Zhuo, LIU Zechen, JIANG Yilei, GUO Shiqi, LI Lili. Fabrication and Performance of Metal Organic Framework Zn-BTC/rGO Nanocomposites[J]. 材料研究学报, 2024, 38(8): 576-584.
[6] HAO Ziheng, ZHENG Liumenghan, ZHANG Ni, JIANG Entong, WANG Guozheng, YANG Jikai. Color-changing Performance of Electrochromic Devices Based on WO3/Pt-NiO Electrodes[J]. 材料研究学报, 2024, 38(8): 569-575.
[7] ZHOU Hui, DU Bin, YANG Pengbin, JIN Dangqin, XIAO Jiali, SHEN Ming, WANG Shengwen. Sodium Gluconate Assisted Synthesis of Nest-like Bi/β-Bi2O3 Heterojunction and Its Visible-light Driven Photocatalytic Activities[J]. 材料研究学报, 2024, 38(7): 549-560.
[8] XU Dongwei, ZHANG Mingju, SHEN Zhihao, XIA Chenlu, XU Jingman, GUO Xiaoqin, XIONG Xuhai, CHEN Ping. Microwave Absorption Performance of Encapsulated Magnetic Particles With Nitrogen-Doped Carbon Nanotubes Fe3O4@NCNTs[J]. 材料研究学报, 2024, 38(6): 430-436.
[9] BIAN Pengbo, HAN Xiuzhu, ZHANG Junfan, ZHU Shize, XIAO Bolv, MA Zongyi. Effect of Aluminum Powder Size and Temperature on Mechanical Properties of Hot Pressed 15%SiC/2009Al Composite[J]. 材料研究学报, 2024, 38(6): 401-409.
[10] LIU Ying, CHEN Ping, ZHOU Xue, SUN Xiaojie, WANG Ruiqi. Preparation and Electrochemical Properties of Hollow FeS2/NiS2/Ni3S2@NC Cube Composites[J]. 材料研究学报, 2024, 38(6): 453-462.
[11] MA Fei, WANG Chuang, GUO Wuming, SHI Xiangdong, SUN Jianying, PANG Gang. Effect of Carbon Content on Tribological Properties of CrN:a-C Multiphase Composite Coatings[J]. 材料研究学报, 2024, 38(4): 297-307.
[12] WANG Zhongnan, GUO Hui, MU Yueshan. Preparation and Properties of Nanocomposite Hydrogel with Dopamine Modification[J]. 材料研究学报, 2024, 38(4): 269-278.
[13] YU Sheng, GUO Wei, LV Shulin, WU Shusen. Synthesis and Mechanical Properties of Ti-Zr-Cu-Pd-Mo Amorphous Alloy Based Composites with In-situ Autogenous β-Ti Phase[J]. 材料研究学报, 2024, 38(2): 105-110.
[14] WENG Xin, LI Qiqi, YANG Guifang, LV Yuancai, LIU Yifan, LIU Minghua. Preparation of Adsorbent Fe-loaded Cellulose/Tannin and Its Adsorption Characteristics for Fluoroquinolones Antibiotics[J]. 材料研究学报, 2024, 38(2): 92-104.
[15] LI Yufeng, FENG Feng, LIU Shibo, LIU Lishuang, GAO Xiaohui. Preparation of Nitrogen and Phosphorus Co-doped Graphene Oxide and Corrosion Resistance of Waterborne Composite Coatings NPGO/Epoxy Resin[J]. 材料研究学报, 2024, 38(11): 861-871.
No Suggested Reading articles found!