|
|
|
| Preparation and Performance of S/NiFeP/KB Composites Electrocatalyst for Lithium Sulfur Batteries |
WU Jing, ZHANG Ziyi, HAN Xu, HOU Xingyan, LI Xueyan, LI Shasha, LIU Wen, LI Peng( ) |
| Taiyuan University of Science and Technology, College of Engineering and Technology, Taiyuan 030024, China |
|
Cite this article:
WU Jing, ZHANG Ziyi, HAN Xu, HOU Xingyan, LI Xueyan, LI Shasha, LIU Wen, LI Peng. Preparation and Performance of S/NiFeP/KB Composites Electrocatalyst for Lithium Sulfur Batteries. Chinese Journal of Materials Research, 2024, 38(11): 828-836.
|
|
|
Abstract Transition metal phosphide has not only metal-like conductive properties but good adsorption and catalytic conversion of polysulfide lithium. In this paper, the NiFeP/KB electrocatalyst grown by 2D nanosheet NiFeP on Ketjen Black ECP-600JD carbon black (KB) was prepared. The S/NiFeP/KB cathode material was obtained by mixing the nano sulfur particles with NiFeP/KB in a proportional and uniform way. Due to the synergistic effect of metal doping and hierarchical structure, the electrode prepared using S/NiFeP/KB material had a specific capacity of 1454.5 mAh/g at 0.1C for the first discharge, which remained 821.1 mAh/g after 200 cycles, 639.9 mAh/g after 300 cycles at 2C, and the capacity retention rate reached 74.7%. Further combined with CV and EIS tests, the NiFeP/KB electrocatalyst can effectively improve the oxidation and reduction reaction rate of lithium polysulfide in the battery, thus promoting the reaction kinetics of lithium and sulfur.
|
|
Received: 27 December 2023
|
|
|
| Fund: National Natural Science Foundation of China(22278251);Innovation and Entrepreneurship Trai-ning Program for College Students(202210109013) |
Corresponding Authors:
LI Peng, Tel: 13466816621, E-mail: lipeng_ty@tyust.edu.cn
|
| 1 |
Cao Y L, Li M, Lu J, et al. Bridging the academic and industrial metrics for next-generation practical batteries [J]. Nat. Nanotechnol., 2019, 14(3): 200
doi: 10.1038/s41565-019-0371-8
pmid: 30778215
|
| 2 |
Liu J, Bao Z A, Cui Y, et al. Pathways for practical high-energy long-cycling lithium metal batteries [J]. Nat. Energy, 2019, 4(3): 180
doi: 10.1038/s41560-019-0338-x
|
| 3 |
Fang D L, Sun P, Huang S Z, et al. An exfoliation-evaporation strategy to regulate N coordination number of Co single-atom catalysts for high- performance lithium-sulfur batteries [J]. ACS Mater. Lett., 2022, 4(1): 1
|
| 4 |
Peng H J, Huang J Q, Cheng X B, et al. Review on high‐loading and high‐energy lithium-sulfur batteries [J]. Adv. Energy Mater., 2017, 7(24): 1700260
|
| 5 |
Song Y, Li X Y, He C Z. Porous carbon framework nested nickel foam as freestanding host for high energy lithium sulfur batteries [J]. Chin. Chem. Lett., 2021, 32(3): 1106
|
| 6 |
Wang R R, Wu R B, Yan X X, et al. Implanting single Zn atoms coupled with metallic Co nanoparticles into porous carbon nanosheets grafted with carbon nanotubes for high-performance lithium-sulfur batteries [J]. Adv. Funct. Mater., 2022, 32(20): 2200424
|
| 7 |
Zou Q L, Lu Y C. Liquid electrolyte design for metal‐sulfur batteries: mechanistic understanding and perspective [J]. EcoMat, 2021, 3(4): e12115
|
| 8 |
Fan X J, Sun W W, Meng F C, et al. Advanced chemical strategies for lithium-sulfur batteries: a review [J]. Green Energy Environ., 2018, 3(1): 2
|
| 9 |
Pang Q, Liang X, Kwok C Y, et al. Advances in lithium-sulfur batteries based on multifunctional cathodes and electrolytes [J]. Nat. Energy, 2016, 1(9): 16132
|
| 10 |
Peng H J, Huang J Q, Zhang Q. A review of flexible lithium-sulfur and analogous alkali metal-chalcogen rechargeable batteries [J]. Chem. Soc. Rev., 2017, 46(17): 5237
|
| 11 |
Seh Z W, Sun Y M, Zhang Q F, et al. Designing high-energy lithium-sulfur batteries [J]. Chem. Soc. Rev., 2016, 45(20): 5605
pmid: 27460222
|
| 12 |
Yue J P, Yan M, Yin Y X, et al. Progress of the interface design in all-solid-state Li-S batteries [J]. Adv. Funct. Mater., 2018, 28(38): 1707533
|
| 13 |
Chen Y, Wang T Y, Tian H J, et al. Advances in lithium-sulfur batteries: from academic research to commercial viability [J]. Adv. Mater., 2021, 33(29): 2003666
|
| 14 |
Chen Y, Zhang W X, Zhou D, et al. Co-Fe mixed metal phosphide nanocubes with highly interconnected-pore architecture as an efficient polysulfide mediator for lithium-sulfur batteries [J]. ACS Nano, 2019, 13(4): 4731
doi: 10.1021/acsnano.9b01079
pmid: 30924635
|
| 15 |
Deng C, Wang Z W, Feng L L, et al. Electrocatalysis of sulfur and polysulfides in Li-S batteries [J]. J. Mater. Chem. A, 2020, 8(38): 19704
|
| 16 |
Du M, Wang X Y, Geng P B, et al. Polypyrrole-enveloped Prussian blue nanocubes with multi-metal synergistic adsorption toward lithium polysulfides: high-performance lithium-sulfur batteries [J]. Chem. Eng. J., 2021, 420: 130518
|
| 17 |
Hong X D, Wang R, Liu Y, et al. Recent advances in chemical adsorption and catalytic conversion materials for Li-S batteries [J]. J. Energy Chem., 2020, 42: 144
doi: 10.1016/j.jechem.2019.07.001
|
| 18 |
Jana M, Xu R, Cheng X B, et al. Rational design of two-dimensional nanomaterials for lithium-sulfur batteries [J]. Energy Environ. Sci., 2020, 13(4): 1049
|
| 19 |
Lei J, Liu T, Chen J J, et al. Exploring and understanding the roles of Li2S n and the strategies to beyond present Li-S batteries [J]. Chem., 2020, 6(10): 2533
|
| 20 |
Liu D H, Zhang C, Zhou G M, et al. Catalytic effects in lithium-sulfur batteries: promoted sulfur transformation and reduced shuttle effect [J]. Adv. Sci., 2018, 5(1): 1700270
|
| 21 |
Chen Z C, Fang R Y, Liang C, et al. Recent progress in sulfur cathode for Li-S batteries [J]. Mater. Rep., 2018, 32(9): 1401
|
|
陈子冲, 方如意, 梁 初 等. 锂硫电池硫正极材料研究进展 [J]. 材料导报, 2018, 32(9): 1401
|
| 22 |
Al Salem H, Babu G, Rao C V, et al. Electrocatalytic polysulfide traps for controlling redox shuttle process of Li-S batteries [J]. J. Am. Chem. Soc., 2015, 137(36): 11542
doi: 10.1021/jacs.5b04472
pmid: 26331670
|
| 23 |
Tao X Y, Wang J G, Liu C, et al. Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium-sulfur battery design [J]. Nat. Commun., 2016, 7(1): 11203
|
| 24 |
Seh W Z, Li W Y, Cha J J, et al. Sulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries [J]. Nat. Commun., 2013, 4(1): 1331
|
| 25 |
Zhao W W, Wang Y F, Duan D H, et al. Application of layered Co3O4/C derived from metal-organic framework in lithium-sulfur batteries [J]. Mater. Rep., 2022, 36(6): 20120263
|
|
赵文文, 王韵芳, 段东红 等. 金属有机骨架衍生的层状Co3O4/C在锂硫电池中的应用 [J]. 材料导报, 2022, 36(6): 20120263
|
| 26 |
Chen T, Ma L B, Cheng B R, et al. Metallic and polar Co9S8 inlaid carbon hollow nanopolyhedra as efficient polysulfide mediator for lithium-sulfur batteries [J]. Nano Energy, 2017, 38: 239
|
| 27 |
Cheng Z B, Xiao Z B, Pan H, et al. Elastic sandwich‐type rGO-VS2/S composites with high tap density: structural and chemical cooperativity enabling lithium-sulfur batteries with high energy density [J]. Adv. Energy Mater., 2018, 8(10): 1702337
|
| 28 |
Wang X L, Zhou N, Tian Y W, et al. SnS2/ZIF-8 derived two-dimensional porous nitrogen-doped carbon nanosheets for lithium-sulfur batteries [J]. J. Inorg. Mater., 2023, 38: 938
|
|
王新玲, 周 娜, 田亚文 等. SnS2/ZIF-8衍生二维多孔氮掺杂碳纳米片复合材料的锂硫电池性能研究 [J]. 无机材料学报, 2023, 38: 938
|
| 29 |
Guang Z X, Huang Y, Chen X F, et al. Three-dimensional P-doped carbon skeleton with built-in Ni2P nanospheres as efficient polysulfides barrier for high-performance lithium-sulfur batteries [J]. Electrochim. Acta, 2019, 307: 260
|
| 30 |
Huang S, Huixiang E, Yang Y, et al. Transition metal phosphides: new generation cathode host/separator modifier for Li-S batter-ies [J]. J. Mater. Chem. A, 2021, 9(12): 7458
|
| 31 |
Huang S Z, Von Lim Y, Zhang X M, et al. Regulating the polysulfide redox conversion by iron phosphide nanocrystals for high-rate and ultrastable lithium-sulfur battery [J]. Nano Energy, 2018, 51: 340
|
| 32 |
Du Z Z, Chen X J, Hu W, et al. Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium-sulfur batteries [J]. J. Am. Chem. Soc., 2019, 141(9): 3977
doi: 10.1021/jacs.8b12973
pmid: 30764605
|
| 33 |
Ma L B, Yuan H, Zhang W J, et al. Porous-shell vanadium nitride nanobubbles with ultrahigh areal sulfur loading for high-capacity and long-life lithium-sulfur batteries [J]. Nano Lett., 2017, 17(12): 7839
doi: 10.1021/acs.nanolett.7b04084
pmid: 29182880
|
| 34 |
Jin G Y, He H C, Wu J, et al. Cobalt-doped hollow carbon framework as sulfur host for the cathode of lithium sulfur battery [J]. J. Inorg. Mater., 2021, 36(2): 203
doi: 10.15541/jim20200161
|
| 35 |
Wang J N, Jin J, Wen Z Y. Application of separators modified by carbon nanospheres enriched with α-MoC1- x nanocrystalline in lithium sulfur batteries [J]. J. Inorg. Mater., 2020, 35(5): 532
|
|
王佳宁, 靳 俊, 温兆银. α-MoC1- x 纳米晶富集碳球修饰隔膜对锂硫电池性能的影响 [J]. 无机材料学报, 2020, 35(5): 532
doi: 10.15541/jim20190237
|
| 36 |
Liu G L, Wang W M, Zeng P, et al. Strengthened d-p orbital hybridization through asymmetric coordination engineering of single-atom catalysts for durable lithium-sulfur batteries [J]. Nano Lett., 2022, 22(15): 6366
|
| 37 |
Wang X, Zhang D, Du F. Recent progress of single-atom catalytic materials for lithium-sulfur batteries [J]. Chin. J. Appl. Chem., 2022, 39(4): 513
|
|
王 欣, 张 冬, 杜 菲. 单原子催化剂在锂硫电池中的研究进展 [J]. 应用化学, 2022, 39(4): 513
|
| 38 |
Hu K, Guo J, Zhang M G, et al. Application of metal compounds in cathode materials and interlayers for lithium-sulfur batteries [J]. Mater. Rep., 2022, 36(19): 21010010
|
|
胡 坤, 郭 锦, 张敏刚 等. 金属化合物在锂硫电池正极材料及夹层中的应用 [J]. 材料导报, 2022, 36(19): 21010010
|
| 39 |
Chai L L, Ye H Z, Hu Z G, et al. Tuning the architecture of hierarchical porous CoNiO2 nanosheet for enhanced performance of Li-S batteries [J]. Batteries, 2022, 8(12): 262
|
| 40 |
Liu J B, Song Y F, Lin C J, et al. Regulating Li+ migration and Li2S deposition by metal-organic framework-derived Co4S3-embedded carbon nanoarrays for durable lithium-sulfur batteries [J]. Sci. China Mater., 2022, 65(4): 947
|
| 41 |
Liu J B, Hu C C, Li H P, et al. Novel Ni/Ni2P@C hollow heterostructure microsphere as efficient sulfur hosts for high-performance lithium-sulfur batteries [J]. J. Alloys Compd., 2021, 871: 159576
|
| 42 |
Shen J D, Xu X J, Liu J, et al. Mechanistic understanding of metal phosphide host for sulfur cathode in high-energy-density lithium-sulfur batteries [J]. ACS Nano, 2019, 13(8): 8986
doi: 10.1021/acsnano.9b02903
pmid: 31356051
|
| 43 |
Zhong Y R, Yin L C, He P, et al. Surface chemistry in cobalt phosphide-stabilized lithium-sulfur batteries [J]. J. Am. Chem. Soc., 2018, 140(4): 1455
doi: 10.1021/jacs.7b11434
pmid: 29309139
|
| 44 |
Zhou J B, Liu X J, Zhu L Q, et al. Deciphering the modulation essence of p bands in Co-based compounds on Li-S chemistry [J]. Joule, 2018, 2(12): 2681
|
| 45 |
Wang L, Wang B J, Fan M H, et al. Unraveling the structure and composition sensitivity of transition metal phosphide toward catalytic performance of C2H2 semi-hydrogenation [J]. J. Catal., 2022, 416: 112
|
| 46 |
Shen Z H, Cao M Q, Zhang Z L, et al. Efficient Ni2Co4P3 nanowires catalysts enhance ultrahigh‐loading lithium-sulfur conversion in a microreactor‐like battery [J]. Adv. Funct. Mater., 2020, 30(3): 1906661
|
| 47 |
Xia W L, Han M Y, Chen Y F, et al. NiFeP anchored on rGO as a multifunctional interlayer to promote the redox kinetics for Li-S batteries via regulating d-bands of Ni-based phosphides [J]. ACS Sustain. Chem. Eng., 2023, 11(5): 1742
|
| 48 |
Yang Q, Wei X J, Cao X, et al. Unveiling the synergistic catalysis essence of trimetallic Fe-Co-Ni phosphides for lithium-sulfur chemistry [J]. Chem. Eng. J., 2023, 452: 139638
|
| 49 |
Tang K, Wang X F, Wang M F, et al. Ni/Fe ratio dependence of catalytic activity in monodisperse ternary nickel iron phosphide for efficient water oxidation [J]. ChemElectroChem, 2017, 4(9): 2150
|
| 50 |
Zhou J L, Zhao Z X, Wu T Y, et al. Efficient catalytic conversion of polysulfides in multifunctional FeP/Carbon cloth interlayer for high capacity and stability of lithium-sulfur batteries [J]. Acta Chim. Sin., 2023, 81(4): 351
|
|
周俊粮, 赵振新, 武庭毅 等. 多功能磷化铁碳布(FeP/CC)中间层高效催化多硫化物实现锂硫电池的高容量与高稳定性 [J]. 化学学报, 2023, 81(4): 351
doi: 10.6023/A23010010
|
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|