Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (8): 597-601    DOI: 10.11901/1005.3093.2021.469
ARTICLES Current Issue | Archive | Adv Search |
Temperature Dependent Luminescence Properties of Graphene Oxide
LI Fulu1, HAN Chunmiao1, GAO Jiawang1, JIANG Jian1, XU Hui2, LI Bing1()
1.College of Physics, Changchun Normal University, Changchun 130032, China
2.Department of Ophthalmology, the First Hospital of Jilin University, Changchun 130021, China
Cite this article: 

LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide. Chinese Journal of Materials Research, 2022, 36(8): 597-601.

Download:  HTML  PDF(973KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The luminescence properties of GO were investigated by means of photoluminescence spectra and absorption spectra. It follows that the luminescence of GO originates from sp2C clusters in lamellar. Sp2C clusters are surrounded by high barrier oxidation functional groups (sp3C), forming a multi-quantum well structure. There are sp2C clusters of different sizes in GO, and the band gap is related to the size. The smaller the size, the wider the band gap, so that the luminous coverage is wider and depends on the excitation wavelength. The emission behavior of different local states in GO was investigated by changing the excitation wavelength and temperature. The results show that the thermal activation energy of sp2C clusters excited by 514 nm was 56 MeV higher than that excited by 830 nm. Temperature has little effect on smaller sp2C clusters, because the smaller the size, the stronger the confinement effect and the radiative transition probability of electron hole pair is increased.

Key words:  inorganic non-metallic materials      low dimensional carbon materials      graphene oxide      luminescence spectrum     
Received:  17 August 2021     
ZTFLH:  O613.7  
Fund: National Natural Science Foundation of China(11404036);Jilin Provincial Science & Technology Department(20210101164JC);Science and Technology Project of Jilin Provincial Department of Education(JJKH20220824KJ);Natural Science Foundation of Changchun Normal University(2020-010)
About author:  LI Bing, Tel: 13080016697, E-mail: libing@ccsfu.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.469     OR     https://www.cjmr.org/EN/Y2022/V36/I8/597

Fig.1  UV-Vis absorption spectra of GO (a) and corresponding Tauc plot (b)
Fig.2  PL spectra of GO for excitation at Eex =488 nm, Eex =514 nm and Eex =830 nm (a) and the dependences as the function of excitation wavelengths: (left) peak wavelength and (right) FWHM of PL spectra (b)
Fig.3  Schematic diagram of band structure of GO
Fig.4  Temperature dependence of the relative PL intensity of GO at two different exciting conditions: (a) Eex =514 nm; (b) Eex =830 nm
Fig.5  Relationship between relative PL intensity and 1/KBT, exciting at Eex =514 nm (a) and Eex =830 nm (b)
1 Stoller M D, Park S J, Zhu Y W, et al. Graphene-based ultracapacitors [J]. Nano. Lett., 2008, 8: 3498
doi: 10.1021/nl802558y pmid: 18788793
2 Vivekchand S R C, Rout C S, Subrahmanyam K S, et al. Graphene-based electrochemical supercapacitors [J]. J. Chem. Sci., 2008, 120: 9
doi: 10.1007/s12039-008-0002-7
3 Ponomarenko L A, Sehedin F, Katsnelson M I, et al. Chaotic dirac billiard in graphene quantum dots [J]. Science, 2008, 320: 356
doi: 10.1126/science.1154663 pmid: 18420930
4 Said A R, Said K, Awwad F, et al. Design, fabrication, and characterization of Hg2+ sensorbased on graphite oxide and metallic nanoclusters [J]. Sensor Actuat. A. Phys., 2018, 271: 270
doi: 10.1016/j.sna.2018.01.033
5 Yang J K, Zhang X T, Li B, et al. Photocatalytic activities of heterostructured TiO2-graphene porous microspheres prepared by ultrasonic spray pyrolysis [J]. J. Alloys Compd., 2014, 584: 180
doi: 10.1016/j.jallcom.2013.08.203
6 Li B, Zhang X T, Li X H, et al. Photo-assisted preparation and patterning of large-area reduced graphene oxide-TiO2 conductive thin film [J]. Chem. Commun., 2010, 46: 3499
doi: 10.1039/c002200d
7 Ma F, Guo Z K, Xu K W, et al. First-principle study of energy band structure of armchair graphene nanoribbons [J]. Solid State Commu., 2012, 152: 1089
doi: 10.1016/j.ssc.2012.04.058
8 Zagonel L F, Mazzucco S, Tence M, et al. Nanometer scale spectral imaging of quantum emitters in nanowires and its correlation to their atomically resolved structure [J]. Nano. Lett., 2011, 11: 568
doi: 10.1021/nl103549t
9 Zhang Y B, Tan Y W, Stormer H L, et al. Experimental observation of the quantum Hall effect and Berry's phase in graphene [J]. Nature, 2005, 438: 201
doi: 10.1038/nature04235
10 Luo Z T, Vora P M, Mele E J, et al. Photoluminescence and band gap modulation in graphene oxide [J]. Appl. Phys. Lett., 2009, 94: 111909
doi: 10.1063/1.3098358
11 Eda G, Lin Y Y, Mattevi C, et al. Blue photoluminescence from chemically derived graphene oxide [J]. Adv. Mater., 2010, 22: 505
doi: 10.1002/adma.200901996
12 Pan D Y, Zhang J C, Li Z, et al. Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots [J]. Adv. Mater., 2010, 22: 734
doi: 10.1002/adma.200902825
13 Li B, Gao F, Yang G M, et al. Synthesis and characterization of graphene film via photo-chemical reduction of graphene oxide [J]. Chem. J. Chinese Universities, 2014, 35(12): 2612
14 Li B, Zhang X T, Chen P, et al. Waveband-dependent photochemical processing of graphene oxide in fabricating reduced graphene oxide film and graphene oxide-Ag nanoparticles film [J]. RSC. Adv., 2014, 4: 2404
doi: 10.1039/C3RA45355C
15 Zhao M X, Meng Z, Li H P, et al. Photodegradation of antibiotic in environmental water by graphene oxide modulation bismuth molybdate under visible light irradiation [J]. Chem. J. Chinese Universities, 2020, 41(11): 2479
16 Lee J, Kim JG, Kim S C, et al. Biosensors based on graphene oxide and its biomedical application [J]. Adv. Drug. Deliv. Rev., 2016, 105: 275
doi: 10.1016/j.addr.2016.06.001
17 Shen X Q, Li Z, Wang G, et al. Logic and reversible dual DNA detection based on the assembly of graphene oxide and DNA-templated quantum dots [J]. Chem. J. Chinese Universities, 2017, 38(12): 2176
18 Sun X M, Liu Z, Welsher K, et al. Nano-graphene oxide for cellular imaging and drug delivery [J]. Nano. Res., 2008, 1: 203
doi: 10.1007/s12274-008-8021-8
19 Hununers W S, Offeman R E. Preparation of graphitic oxide [J]. J. Am. Chem. Soc., 1958, 80: 1339
doi: 10.1021/ja01539a017
20 Li D, Müller M B, Gilje S, et al. Processable aqueous dispersions of graphene nanosheets [J]. Nat. Nanotechnol., 2008, 3: 101
doi: 10.1038/nnano.2007.451
21 Li X Y, Zhang G Y, Bai X M, et al. Highly conducting graphene sheets and Langmuir-Blodgett films [J]. Nat. Nanotechnol., 2008, 3: 538
doi: 10.1038/nnano.2008.210
22 Urbaeh F. The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids [J]. Phys.Rev., 1953, 92: 1324
23 Wu J X, Xu F, Ye P, et al. The effects of nitrogen partial pressure on the microstructure of amorphous carbon nitride films [J]. Integr. Ferroelectr., 2017, 180(1): 139
doi: 10.1080/10584587.2017.1338917
24 Prasad N, Tanwar S, Mukhopadhyay S, et al. Spatio-temporal analysis of the electric field-induced solid-state reduction dynamics of graphene oxide thin films for controlled band-gap modulation [J]. J. Phys. Chem. C., 2020, 124: 21874
doi: 10.1021/acs.jpcc.0c07139
25 Adhikary S, Tian X M, Adhikari S, et al. Bonding defects and optical band gaps of DLC films deposited by microwave surface-wave plasma CVD [J]. Diam. Relat. Mater., 2005, 14: 1832
doi: 10.1016/j.diamond.2005.08.030
26 Essig S, Marquardt C W, Vijayaraghavan A, et al. Phonon-Assisted Electroluminescence from Metallic Carbon Nanotubes and Graphene [J]. Nano. Lett., 2010, 10: 1589
doi: 10.1021/nl9039795 pmid: 20405819
27 Skumanich A, Frova A, Amer N M. Urbach tail and gap states in hydrogenated a-SiC and a-SiGe alloys [J]. Solid State Commun., 1985, 54: 597
doi: 10.1016/0038-1098(85)90086-9
28 Gokus T, Nair R R, Bonetti A, et al. Making Graphene Luminescent by Oxygen Plasma Treatment [J]. ACS. Nano., 2009, 3: 3963
doi: 10.1021/nn9012753 pmid: 19925014
29 Guo H L, Wang X F, Qian Q Y, et al. A Green Approach to the Synthesis of Graphene Nanosheets [J]. ACS. Nano., 2009, 3: 2653
doi: 10.1021/nn900227d
30 Robertson J. π-bonded clusters in amorphous carbon materials [J]. Philos. Mag. B., 1992, 66: 199
doi: 10.1080/13642819208224583
31 Robertson J. Diamond-like amorphous carbon [J]. Mater. Sci. Eng. R., 2002, 37: 129
doi: 10.1016/S0927-796X(02)00005-0
32 Vassilyev V A, Volkov A S, Musabekov E U, et al. Photoluminescence of amorphous hydrogenated silicon-carbon (a-SiC:H) films [J]. J.Non. Cryst.Solids, 1989, 114: 507
33 Lou Q, Qu S N, Jing P T, et al. Water-triggered luminescent "nano-bombs" based on supra-(carbon nanodots) [J]. Adv. Mater., 2015, 27: 1389
doi: 10.1002/adma.201403635
34 Chambers M D, Clarke D R. Doped oxides for high-temperature luminescence and lifetime thermometry [J]. Annu. Rev. Mater. Res., 2009, 39: 325
doi: 10.1146/annurev-matsci-112408-125237
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[13] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
[14] HUANG Huan, ZHANG Xuntao, YANG Shangke, XIAO Liuxin, ZHANG Zhaoxin, YAN Lei, LIN Hailan, BIAN Jun, CHEN Daiqiang. Properties of Nylon PA6-based Nanocomposites Co-modified with Graphene Oxide/sodium Benzoate Complex Nucleating Agent[J]. 材料研究学报, 2022, 36(6): 416-424.
[15] MENG Xiangdong, ZHEN Chao, LIU Gang, CHENG Huiming. Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting[J]. 材料研究学报, 2022, 36(4): 241-249.
No Suggested Reading articles found!