Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (4): 241-249    DOI: 10.11901/1005.3093.2021.314
ARTICLES Current Issue | Archive | Adv Search |
Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting
MENG Xiangdong1,2, ZHEN Chao1(), LIU Gang1,3, CHENG Huiming1,2,4
1.Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
3.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
4.Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
Cite this article: 

MENG Xiangdong, ZHEN Chao, LIU Gang, CHENG Huiming. Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting. Chinese Journal of Materials Research, 2022, 36(4): 241-249.

Download:  HTML  PDF(8203KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Photocathode of CuO nanoarray (CuO NAS) with strong ability of light capture and charge separation capacity was fabricated by reactive magnetron sputtering with in-situ heating the substrate, while the phase composition, crystal morphology, crystal growth orientation, crystal face exposure, thickness and electronic structure of the films were controlled by changing oxygen partial pressure, substrate temperature, cavity pressure and sputtering time. The photocurrent density of the optimized CuO NAS photocathode is up to 2.4 mA·cm-2.

Key words:  inorganic non-metallic materials      photoelectrochemical water splitting      magnetron sputtering      CuO     
Received:  19 May 2021     
ZTFLH:  150.3045  
Fund: National Natural Science Foundation of China(51825204);National Natural Science Foundation of China(52072377);Key Research Program of Frontier Sciences CAS(QYZDB-SSW-JSC039);Youth Innovation Promotion Association of the Chinese Academy of Sciences(2020192)
About author:  ZHEN Chao, Tel: (024)83970722, E-mail: czhen@imr.ac.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.314     OR     https://www.cjmr.org/EN/Y2022/V36/I4/241

Fig.1  Sketch map of the fabrication process for CuO NAs
Fig.2  SEM images of samples fabricated under different oxygen partial pressure (a~e) the oxygen partial pressure was 6%, 25%, 50%, 75% and 94%, respectively, (f~j) corresponding cross-section pictures and the thickness of different samples was provided
Fig.3  XRD patterns of samples fabricated under the condition of a pressure of 1.0 Pa, the substrate temperature of 300oC, oxygen partial pressure of 6%, 25%, 50%, 75%, 94%, respectively
Fig.4  SEM images of samples fabricated under the condions of pressure of 1.0 Pa and substrate set temperatures of 100℃, 200℃, 300℃, 400℃, 500℃, respectively (a~e), and corresponding cross-section pictures (f~j) and the thickness of different samples was provided
Fig.5  XRD patterns of samples fabricated under the conditions of pressure of 1.0 Pa and substrate temperatures of 100℃, 200℃, 300℃, 400℃, 500℃, respectively
Fig.6  SEM images of CuO NAs photocathodes fabricated under the condition of a pressure of 1.0 Pa and the substrate temperature of 300℃ (a~e) the samples of different sputtering time, 15 min, 30 min, 60 min, 90 min, 120 min, respectively and (f~j) corresponding cross-section pictures, the thickness of different samples was provided
Fig.7  XRD patterns of the CuO NAs photocathodes fabricated under the condition of a pressure of 1.0 Pa and the substrate temperature of 300℃ but of different sputtering time, 15 min, 30 min, 60 min, 90 min, 120 min, respectively
Fig.8  SEM images of CuO NAs photocathodes fabricated under the condition of a substrate temperature of 400℃, sputtering time of 90 min (a~d) working pressure was 1.0 Pa, 1.5 Pa, 4.1 Pa, 8.5 Pa, respectively, (e~h) corresponding cross-section pictures, the thickness of different samples was provided
Fig.9  XRD patterns of CuO NAs photocathodes fabricated under the condition of a substrate temperature of 400℃, sputtering time of 90 min, working pressure of 1.0 Pa, 1.5 Pa, 4.1 Pa, 8.5 Pa, respectively
Fig.10  UV-visible absorption spectra of the CuO NAs photocathodes fabricated under the condition of a pressure of 1.0 Pa and the substrate temperature of 300℃, sputtering time of 15 min, 30 min, 60 min, 90 min, 120 min, respectively
Fig.11  UV-visible absorption spectra (a) and Tauc plot of the CuO NAs photocathodes fabricated with a condition of a sputtering time of 90 min and the substrate temperature was set at 300℃ but of different working pressure of 1.0 Pa, 1.5 Pa, 4.1 Pa, 8.5 Pa, respectively (b)
Fig.12  Applied potential bias-dependent photocurrent density curves of samples fabricated under the condition of a pressure of 1.0 Pa and the substrate temperature of 300℃, oxygen partial pressure of 6%, 25%, 50%, 75%, 94%, measured in 0.1 mol/L KOH aqueous solution and the area of photoelectrode was 1 cm2
Fig.13  Applied potential bias-dependent photocurrent density curves of samples fabricated under the conditions of pressure of 1.0 Pa, substrate temperatures of 100℃, 200℃, 300℃, 400℃, 500℃, respectively, measured in 0.1 mol/L KOH aqueous solution, the area of photoelectrode was 1 cm2
Fig.14  Applied potential bias-dependent photocurrent density curves of the CuO NAs photocathodes fabricated under the conditions of a pressure of 1.0 Pa and the substrate temperature of 300℃, sputtering time of 15 min, 30 min, 60 min, 90 min, 120 min, respectively, measured in 0.1 mol/L KOH aqueous solution, the area of photoelectrode is 1 cm2
Fig.15  Applied potential bias-dependent photocurrent density curves (a) and Time dependent photocurrent density curves (b) of CuO NAs photocathodes fabricated under the conditions of a substrate temperature of 400℃, sputtering time of 90 min, pressure of 1.0 Pa, 1.5 Pa, 4.1 Pa, 8.5 Pa, respectively, measured in 0.1 mol/L KOH aqueous solution at 0.56 V (vs. RHE), the area of photoelectrode was 1 cm2
Fig.16  Mott-Schottky curves of the CuO NAs photocathodes fabricated under the condition of a sputtering time of 90 min, the substrate temperature of 300℃, pressure of 1.0 Pa, 1.5 Pa, 4.1 Pa, 8.5 Pa, respectively
1 Wang Y., Schwartz J., Gim J., et al. Stable unassisted solar water splitting on semiconductor photocathodes protected by multifunctional GaN nanostructures [J]. Acs Energy Lett, 2019, 4(7): 1541
doi: 10.1021/acsenergylett.9b00549
2 Li D., Liu Y., Shi W., et al. Crystallographic-orientation-dependent charge separation of BiVO4 for solar water oxidation [J]. Acs Energy Lett, 2019, 4(4): 825
doi: 10.1021/acsenergylett.9b00153
3 Cheng W. H., Richter M. H., May M. M., et al. Monolithic photoelectrochemical device for direct water splitting with 19% efficiency [J]. Acs Energy Lett, 2018, 3(8): 1795
doi: 10.1021/acsenergylett.8b00920
4 Hsu M. -H.,Lee W. -J.,Kuang J. -H., et al. Wind energy [J]. Mathematical Problems in Engineering, 2013, 13(1): 759686
5 Grandin K., Jagers P., Kullander S. Nuclear energy [J]. Ambio, 2010, 39(26): 26
doi: 10.1007/s13280-010-0061-0
6 Luo J.,, Im J. -H.,Mayer M. T., et al. Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts [J]. Science, 2014, 345(6204):1593
doi: 10.1126/science.1258307
7 Zhu S., Wang, Photocatalysis D. : Basic principles, diverse forms of implementations and emerging scientific opportunities [J]. Adv Energy Mater, 2017, 7(23): 1700841
doi: 10.1002/aenm.201700841
8 Qi J., Zhang W., Cao R. Solar-to-hydrogen energy conversion based on water splitting [J]. Adv Energy Mater, 2018, 8(5): 1701620
doi: 10.1002/aenm.201701620
9 Low J., Jiang C., Cheng B., et al. A review of direct Z-scheme photocatalysts [J]. Small Methods, 2017, 1(5): 1700080
doi: 10.1002/smtd.201700080
10 Liu X., Inagaki S., Gong J. Heterogeneous molecular systems for photocatalytic CO2 reduction with water oxidation [J]. Angew. Chem. Int. Ed., 2016, 55(48): 14924
doi: 10.1002/anie.201600395
11 Liu J., Hodes G., Yan J. Q., et al. Metal-doped Mo2C (metal = Fe, Co, Ni, Cu) as catalysts on TiO2 for photocatalytic hydrogen evolution in neutral solution [J]. Chinese J. Catal., 2021, 42(01): 205
doi: 10.1016/S1872-2067(20)63589-6
刘 晶, 盖瑞侯得, 闫俊青 等. 金属(Fe,Co,Ni,Cu)掺杂的Mo2C催化剂在TiO2表面用于中性条件光催化分解水产氢 [J]. 中国催化学报, 2021, 42(01): 205
12 Liu Y. J., Geng L., Kang Y., et al. Odd‐membered cyclic hetero‐polyoxotitanate nanoclusters with high stability and photocatalytic H2 evolution activity [J]. Chinese J. Catal., 2021, 42(08): 1332
doi: 10.1016/S1872-2067(20)63648-8
刘雅洁, 耿 琳, 康 遥 等. 具有高稳定性以及光催化产氢活性的奇数环状异金属钛氧纳米团簇 [J]. 中国催化学报, 2021, 42(08): 1332
13 Zhou D. H., Fan K., Recent strategies to enhance the efficiency of hematite photoanodes in photoelectrochemical water splitting [J]. Chinese J. Catal., 2021, 42(06): 904
doi: 10.1016/S1872-2067(20)63712-3
周定华, 范 科. 提高氧化铁光电催化分解水效率的策略进展 [J]. 中国催化学报, 2021, 42(06): 904
14 Xie L., Wang P., Li Z. F., et al. Hydrothermal synthesis and photocatalytic activity of CuO/ZnO composite photocatalyst [J]. Chin. J. Mater. Res., 2019, 33(10): 728
谢 亮, 王 平, 李之锋 等. CuO/ZnO复合光催化剂的制备和性能 [J]. 材料研究学报, 2019, 33(10): 728
15 Zhu X. D., Wang J., Ma Y., et al. Influence of heat treatment on photocatalytic activity of Ag-ZnO heterostructure [J]. Chin. J. Mater. Res., 2020, 34(10): 770
朱晓东, 王 娟, 马 洋 等. 热处理对Ag-ZnO异质结构光催化性能的影响 [J]. 材料研究学报, 2020, 34(10): 770
doi: 10.11901/1005.3093.2020.132
16 Jundale D. M., Joshi P. B., Sen S., et al. Nanocrystalline CuO thin films: synthesis, microstructural and optoelectronic properties [J]. J Mater Sci-Mater El, 2012, 23(8): 1492
doi: 10.1007/s10854-011-0616-2
17 Wang Z., Zhang L., Schülli T. U., et al. Identifying copper vacancies and their role in the CuO based photocathode for water splitting [J]. 2019, 58(49): 17604
18 Septina W., Prabhakar R. R., Wick R., et al. Stabilized solar hydrogen production with CuO/CdS heterojunction thin film photocathodes [J]. Chem. Mater., 2017, 29(4): 1735
doi: 10.1021/acs.chemmater.6b05248
19 Kunturu P. P., Huskens J. Efficient solar water splitting photocathodes comprising a copper oxide heterostructure protected by a thin carbon layer [J]. Acs Appl Energ Mater, 2019, 2(11): 7850
doi: 10.1021/acsaem.9b01290
20 Hardee K. L., Bard A. J. Semiconductor Electrodes: X. Photoelectrochemical behavior of several polycrystalline metal oxide electrodes in aqueous solutions [J]. J. Electrochem. Soc., 1977, 124(2): 215
doi: 10.1149/1.2133269
21 Guha S., Peebles D., Wieting T. J. Zone-center (q=0) optical phonons in CuO studied by Raman and infrared spectroscopy [J]. Physical Review B, 1991, 43(16): 13092
pmid: 9997131
22 Forsyth J. B., Hull S. The effect of hydrostatic pressure on the ambient temperature structure of CuO [J]. J. Phys.: Condens. Matter, 1991, 3(28): 5257
doi: 10.1088/0953-8984/3/28/001
23 Wang S. Q., Huo W. Y., Xu Z. C., et al. Fabrication of films of Co doped TiO2 nanotube array and their photocatalytic reduction performance [J]. Chin. J. Mater. Res., 2020, 34(3): 176
王世琦, 霍文燚, 徐正超 等. 钴掺杂TiO2纳米管阵列薄膜的制备及其光催化还原性能 [J]. 材料研究学报, 2020, 34(3): 176
doi: 10.11901/1005.3093.2019.373
24 Wang Z. M., Zhu X. L., Li Y. M., et al. Effect of B and Ru co-modification on structure and photocatalytic activity of TiO2 nanotubes [J]. Chin. J. Mater. Res., 2018, 32(9): 655
王竹梅, 朱晓玲, 李月明 等. B和Ru共改性对TiO2纳米管阵列的结构和光催化性能的影响 [J]. 材料研究学报, 2018, 32(9): 655
25 Xue W. H., Chang W. X., Hu X. Y., et al. 2D mesoporous ultrathin Cd0.5Zn0.5S nanosheet: Fabrication mechanism and application potential for photocatalytic H2 evolution [J]. Chinese J. Catal., 2021, 42(01): 152
doi: 10.1016/S1872-2067(20)63593-8
薛文华, 常文茜, 胡晓云 等. 二维介孔超薄Cd0.5Zn0.5S纳米片:形成机制及光催化分解水制氢性能 [J]. 中国催化学报, 2021, 42(01): 152
26 Samarasekara P.,, Arachchi M. A. K. M.,Abeydeera A. S., et al. Photocurrent enhancement of d.c. sputtered copper oxide thin films [J]. Bull. Mater. Sci., 2005, 28(5): 483
doi: 10.1007/BF02711241
27 Kayes B. M., Atwater H. A., Lewis N. S. Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells [J]. J. Appl. Phys., 2005, 97(11): 114302
doi: 10.1063/1.1901835
28 Iles P. A. Diffusion length measurement and silicon quality [J]. Solar Cells, 1982, 7(1): 79
doi: 10.1016/0379-6787(82)90092-8
29 Chen C. J., Yeh C. Y., Chen C. H., et al. Molybdenum tungsten disulfide with a large number of sulfur vacancies and electronic unoccupied states on silicon micropillars for solar hydrogen evolution [J]. Acs Appl Mater Inter, 2020, 12(49): 54671
doi: 10.1021/acsami.0c15905
30 Lee M. H., Takei K., Zhang J., et al. p-Type InP nanopillar photocathodes for efficient solar-driven hydrogen production [J]. Angew. Chem. Int. Ed., 2012, 51(43): 10760
doi: 10.1002/anie.201203174
31 Hochbaum A. I., Yang P. Semiconductor Nanowires for Energy Conversion [J]. Chem. Rev., 2010, 110(1): 527
doi: 10.1021/cr900075v pmid: 19817361
32 Luo J., Steier L., Son M. K., et al. Cu2O nanowire photocathodes for efficient and durable solar water splitting [J]. Nano Lett., 2016, 16(3): 1848
doi: 10.1021/acs.nanolett.5b04929
33 Masudy-Panah S., Siavash Moakhar R., Chua C. S., et al. Nanocrystal engineering of sputter-grown CuO photocathode for visible-light-driven electrochemical water splitting [J]. Acs Appl Mater Inter, 2016, 8(2): 1206
doi: 10.1021/acsami.5b09613
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] YAN Chunliang, GUO Peng, ZHOU Jingyuan, WANG Aiying. Electrical Properties and Carrier Transport Behavior of Cu Doped Amorphous Carbon Films[J]. 材料研究学报, 2023, 37(10): 747-758.
[9] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[10] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[11] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[12] SHAN Weiyao, WANG Yongli, LI Jing, XIONG Liangyin, DU Xiaoming, LIU Shi. High Temperature Oxidation Resistance of Cr Based Coating on Zirconium Alloy[J]. 材料研究学报, 2022, 36(9): 699-705.
[13] ZHANG Peng, HUANG Dong, ZHANG Fuquan, YE Chong, WU Xiao, WU Huang. Effect of Graphitization Degree of Mesophase Pitch-based Carbon Fibers on Carbon Fiber/Al Interface Damage[J]. 材料研究学报, 2022, 36(8): 579-590.
[14] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[15] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
No Suggested Reading articles found!