|
|
Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting |
MENG Xiangdong1,2, ZHEN Chao1( ), LIU Gang1,3, CHENG Huiming1,2,4 |
1.Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2.School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China 3.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China 4.Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China |
|
Cite this article:
MENG Xiangdong, ZHEN Chao, LIU Gang, CHENG Huiming. Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting. Chinese Journal of Materials Research, 2022, 36(4): 241-249.
|
Abstract Photocathode of CuO nanoarray (CuO NAS) with strong ability of light capture and charge separation capacity was fabricated by reactive magnetron sputtering with in-situ heating the substrate, while the phase composition, crystal morphology, crystal growth orientation, crystal face exposure, thickness and electronic structure of the films were controlled by changing oxygen partial pressure, substrate temperature, cavity pressure and sputtering time. The photocurrent density of the optimized CuO NAS photocathode is up to 2.4 mA·cm-2.
|
Received: 19 May 2021
|
|
Fund: National Natural Science Foundation of China(51825204);National Natural Science Foundation of China(52072377);Key Research Program of Frontier Sciences CAS(QYZDB-SSW-JSC039);Youth Innovation Promotion Association of the Chinese Academy of Sciences(2020192) |
About author: ZHEN Chao, Tel: (024)83970722, E-mail: czhen@imr.ac.cn
|
1 |
Wang Y., Schwartz J., Gim J., et al. Stable unassisted solar water splitting on semiconductor photocathodes protected by multifunctional GaN nanostructures [J]. Acs Energy Lett, 2019, 4(7): 1541
doi: 10.1021/acsenergylett.9b00549
|
2 |
Li D., Liu Y., Shi W., et al. Crystallographic-orientation-dependent charge separation of BiVO4 for solar water oxidation [J]. Acs Energy Lett, 2019, 4(4): 825
doi: 10.1021/acsenergylett.9b00153
|
3 |
Cheng W. H., Richter M. H., May M. M., et al. Monolithic photoelectrochemical device for direct water splitting with 19% efficiency [J]. Acs Energy Lett, 2018, 3(8): 1795
doi: 10.1021/acsenergylett.8b00920
|
4 |
Hsu M. -H.,Lee W. -J.,Kuang J. -H., et al. Wind energy [J]. Mathematical Problems in Engineering, 2013, 13(1): 759686
|
5 |
Grandin K., Jagers P., Kullander S. Nuclear energy [J]. Ambio, 2010, 39(26): 26
doi: 10.1007/s13280-010-0061-0
|
6 |
Luo J.,, Im J. -H.,Mayer M. T., et al. Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts [J]. Science, 2014, 345(6204):1593
doi: 10.1126/science.1258307
|
7 |
Zhu S., Wang, Photocatalysis D. : Basic principles, diverse forms of implementations and emerging scientific opportunities [J]. Adv Energy Mater, 2017, 7(23): 1700841
doi: 10.1002/aenm.201700841
|
8 |
Qi J., Zhang W., Cao R. Solar-to-hydrogen energy conversion based on water splitting [J]. Adv Energy Mater, 2018, 8(5): 1701620
doi: 10.1002/aenm.201701620
|
9 |
Low J., Jiang C., Cheng B., et al. A review of direct Z-scheme photocatalysts [J]. Small Methods, 2017, 1(5): 1700080
doi: 10.1002/smtd.201700080
|
10 |
Liu X., Inagaki S., Gong J. Heterogeneous molecular systems for photocatalytic CO2 reduction with water oxidation [J]. Angew. Chem. Int. Ed., 2016, 55(48): 14924
doi: 10.1002/anie.201600395
|
11 |
Liu J., Hodes G., Yan J. Q., et al. Metal-doped Mo2C (metal = Fe, Co, Ni, Cu) as catalysts on TiO2 for photocatalytic hydrogen evolution in neutral solution [J]. Chinese J. Catal., 2021, 42(01): 205
doi: 10.1016/S1872-2067(20)63589-6
|
|
刘 晶, 盖瑞侯得, 闫俊青 等. 金属(Fe,Co,Ni,Cu)掺杂的Mo2C催化剂在TiO2表面用于中性条件光催化分解水产氢 [J]. 中国催化学报, 2021, 42(01): 205
|
12 |
Liu Y. J., Geng L., Kang Y., et al. Odd‐membered cyclic hetero‐polyoxotitanate nanoclusters with high stability and photocatalytic H2 evolution activity [J]. Chinese J. Catal., 2021, 42(08): 1332
doi: 10.1016/S1872-2067(20)63648-8
|
|
刘雅洁, 耿 琳, 康 遥 等. 具有高稳定性以及光催化产氢活性的奇数环状异金属钛氧纳米团簇 [J]. 中国催化学报, 2021, 42(08): 1332
|
13 |
Zhou D. H., Fan K., Recent strategies to enhance the efficiency of hematite photoanodes in photoelectrochemical water splitting [J]. Chinese J. Catal., 2021, 42(06): 904
doi: 10.1016/S1872-2067(20)63712-3
|
|
周定华, 范 科. 提高氧化铁光电催化分解水效率的策略进展 [J]. 中国催化学报, 2021, 42(06): 904
|
14 |
Xie L., Wang P., Li Z. F., et al. Hydrothermal synthesis and photocatalytic activity of CuO/ZnO composite photocatalyst [J]. Chin. J. Mater. Res., 2019, 33(10): 728
|
|
谢 亮, 王 平, 李之锋 等. CuO/ZnO复合光催化剂的制备和性能 [J]. 材料研究学报, 2019, 33(10): 728
|
15 |
Zhu X. D., Wang J., Ma Y., et al. Influence of heat treatment on photocatalytic activity of Ag-ZnO heterostructure [J]. Chin. J. Mater. Res., 2020, 34(10): 770
|
|
朱晓东, 王 娟, 马 洋 等. 热处理对Ag-ZnO异质结构光催化性能的影响 [J]. 材料研究学报, 2020, 34(10): 770
doi: 10.11901/1005.3093.2020.132
|
16 |
Jundale D. M., Joshi P. B., Sen S., et al. Nanocrystalline CuO thin films: synthesis, microstructural and optoelectronic properties [J]. J Mater Sci-Mater El, 2012, 23(8): 1492
doi: 10.1007/s10854-011-0616-2
|
17 |
Wang Z., Zhang L., Schülli T. U., et al. Identifying copper vacancies and their role in the CuO based photocathode for water splitting [J]. 2019, 58(49): 17604
|
18 |
Septina W., Prabhakar R. R., Wick R., et al. Stabilized solar hydrogen production with CuO/CdS heterojunction thin film photocathodes [J]. Chem. Mater., 2017, 29(4): 1735
doi: 10.1021/acs.chemmater.6b05248
|
19 |
Kunturu P. P., Huskens J. Efficient solar water splitting photocathodes comprising a copper oxide heterostructure protected by a thin carbon layer [J]. Acs Appl Energ Mater, 2019, 2(11): 7850
doi: 10.1021/acsaem.9b01290
|
20 |
Hardee K. L., Bard A. J. Semiconductor Electrodes: X. Photoelectrochemical behavior of several polycrystalline metal oxide electrodes in aqueous solutions [J]. J. Electrochem. Soc., 1977, 124(2): 215
doi: 10.1149/1.2133269
|
21 |
Guha S., Peebles D., Wieting T. J. Zone-center (q=0) optical phonons in CuO studied by Raman and infrared spectroscopy [J]. Physical Review B, 1991, 43(16): 13092
pmid: 9997131
|
22 |
Forsyth J. B., Hull S. The effect of hydrostatic pressure on the ambient temperature structure of CuO [J]. J. Phys.: Condens. Matter, 1991, 3(28): 5257
doi: 10.1088/0953-8984/3/28/001
|
23 |
Wang S. Q., Huo W. Y., Xu Z. C., et al. Fabrication of films of Co doped TiO2 nanotube array and their photocatalytic reduction performance [J]. Chin. J. Mater. Res., 2020, 34(3): 176
|
|
王世琦, 霍文燚, 徐正超 等. 钴掺杂TiO2纳米管阵列薄膜的制备及其光催化还原性能 [J]. 材料研究学报, 2020, 34(3): 176
doi: 10.11901/1005.3093.2019.373
|
24 |
Wang Z. M., Zhu X. L., Li Y. M., et al. Effect of B and Ru co-modification on structure and photocatalytic activity of TiO2 nanotubes [J]. Chin. J. Mater. Res., 2018, 32(9): 655
|
|
王竹梅, 朱晓玲, 李月明 等. B和Ru共改性对TiO2纳米管阵列的结构和光催化性能的影响 [J]. 材料研究学报, 2018, 32(9): 655
|
25 |
Xue W. H., Chang W. X., Hu X. Y., et al. 2D mesoporous ultrathin Cd0.5Zn0.5S nanosheet: Fabrication mechanism and application potential for photocatalytic H2 evolution [J]. Chinese J. Catal., 2021, 42(01): 152
doi: 10.1016/S1872-2067(20)63593-8
|
|
薛文华, 常文茜, 胡晓云 等. 二维介孔超薄Cd0.5Zn0.5S纳米片:形成机制及光催化分解水制氢性能 [J]. 中国催化学报, 2021, 42(01): 152
|
26 |
Samarasekara P.,, Arachchi M. A. K. M.,Abeydeera A. S., et al. Photocurrent enhancement of d.c. sputtered copper oxide thin films [J]. Bull. Mater. Sci., 2005, 28(5): 483
doi: 10.1007/BF02711241
|
27 |
Kayes B. M., Atwater H. A., Lewis N. S. Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells [J]. J. Appl. Phys., 2005, 97(11): 114302
doi: 10.1063/1.1901835
|
28 |
Iles P. A. Diffusion length measurement and silicon quality [J]. Solar Cells, 1982, 7(1): 79
doi: 10.1016/0379-6787(82)90092-8
|
29 |
Chen C. J., Yeh C. Y., Chen C. H., et al. Molybdenum tungsten disulfide with a large number of sulfur vacancies and electronic unoccupied states on silicon micropillars for solar hydrogen evolution [J]. Acs Appl Mater Inter, 2020, 12(49): 54671
doi: 10.1021/acsami.0c15905
|
30 |
Lee M. H., Takei K., Zhang J., et al. p-Type InP nanopillar photocathodes for efficient solar-driven hydrogen production [J]. Angew. Chem. Int. Ed., 2012, 51(43): 10760
doi: 10.1002/anie.201203174
|
31 |
Hochbaum A. I., Yang P. Semiconductor Nanowires for Energy Conversion [J]. Chem. Rev., 2010, 110(1): 527
doi: 10.1021/cr900075v
pmid: 19817361
|
32 |
Luo J., Steier L., Son M. K., et al. Cu2O nanowire photocathodes for efficient and durable solar water splitting [J]. Nano Lett., 2016, 16(3): 1848
doi: 10.1021/acs.nanolett.5b04929
|
33 |
Masudy-Panah S., Siavash Moakhar R., Chua C. S., et al. Nanocrystal engineering of sputter-grown CuO photocathode for visible-light-driven electrochemical water splitting [J]. Acs Appl Mater Inter, 2016, 8(2): 1206
doi: 10.1021/acsami.5b09613
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|