Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (8): 602-608    DOI: 10.11901/1005.3093.2021.443
ARTICLES Current Issue | Archive | Adv Search |
Preparation of SnO2@Ti3C2Tx and Its Application in Lithium Ion Battery as Anode Material
LI Lingfang1(), YUAN Zhipeng2, FAN Changling2
1.College of Mechanical Engineering, Hunan University of Arts and Science, Changde 415000, China
2.College of Materials Science and Engineering, Hunan University, Changsha 410082, China
Cite this article: 

LI Lingfang, YUAN Zhipeng, FAN Changling. Preparation of SnO2@Ti3C2Tx and Its Application in Lithium Ion Battery as Anode Material. Chinese Journal of Materials Research, 2022, 36(8): 602-608.

Download:  HTML  PDF(7257KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

SnO2 nanopoints were in-situ grown on and between Ti3C2Tx layers, and the nanostructured SnO2@Ti3C2Tx composites were prepared by ultrasonic adsorption and low temperature heat treatment. SnO2@Ti3C2Tx composites were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and high resolution transmission electron microscopy (HRTEM). Results show that SnO2 nanoparticles are densely distributed between the layers of Ti3C2Tx. Ti3C2Txowns outstanding limiting effect and graphite-like structure, it inhibits the volume expansion and agglomeration of SnO2 and accelerates the transition of lithium ions and electrons. In addition, SnO2 is embedded between the layers to improve the longitudinal structural stability of Ti3C2Tx by preventing the restacking. Therefore, SnO2@Ti3C2Tx shows a synergistic effect between the two components and has good rate and cycle performance as anode of LIBs.

Key words:  composite      SnO2/Ti3C2Tx      ultrasound-aided      anode material     
Received:  13 August 2021     
ZTFLH:  TM912.9  
Fund: National Natural Science Foundation of China(51802096);Natural Science Foundation of Hunan Province(2020JJ4449);Key Project of Hunan Provincial Education Department(20A346)
About author:  LI Lingfang, Tel: 13875010806, E-mail: yourvicky@126.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.443     OR     https://www.cjmr.org/EN/Y2022/V36/I8/602

Fig.1  SEM (a, b) and TEM (c, d) images of Ti3C2Tx
Fig.2  SEM (a, b) and TEM (c) images of ultra-Sn-MX, SEM images of Sn-MX (d, e)
Fig.3  Composition analysis of samples (a) XRD patterns; (b) XPS patterns of ultra-Sn-MX
Fig.4  Electrochemical performances of sampels (a) rate performance; (b) charge and discharge curves and (c) cycle performance
Fig.5  CV curves of Ti3C2Tx (a) and ultra-Sn-MX (b), including first three cycles and after 100 cycles and EIS patterns of three samples (c)
1 Naguib M, Kurtoglu M, Presser V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2 [J]. Adv. Mater. 2011, 23(37): 4248
doi: 10.1002/adma.201102306
2 Lu M, Han W, Li H, et al. Tent-pitching-inspired high-valence period 3-cation pre-intercalation excels for anode of 2D titanium carbide (MXene) with high Li storage capacity [J]. Energy Stor. Mater., 2019, 16: 163
3 Li K, Liang M Y, Wang H, et al. 3D mxene architectures for efficient energy storage and conversion [J]. Adv. Func. Mate., 2020, 30: 2000842
4 Ma Z, Zhou X, Deng W, et al. 3D Porous MXene (Ti3C2)/reduced graphene oxide hybrid films for advanced lithium storage [J]. ACS Appl. Mater. Inter., 2018, 10 (4): 3634
doi: 10.1021/acsami.7b17386
5 Yang Z X, Wu Q, Ren Y Q, et al. Massive preparation and supercapacitor performance of layered Ti3C2 [J]. Chinese J. Mater. Res., 2020, 34(11): 861
杨占鑫, 吴 琼, 任奕桥. 宏量制备层状Ti3C2及其超级电容的性能 [J]. 材料研究学报. 2020, 34(11): 861
doi: 10.11901/1005.3093.2020.167
6 Alhabeb M, Maleski K, Anasori B, et al. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene) [J]. Chem. Mater., 2017, 29(18): 7633
doi: 10.1021/acs.chemmater.7b02847
7 Wang H, Wu Y, Yuan X, et al. Clay-inspired mxene-based electrochemical devices and photo-electrocatalyst: state-of-the-art progresses and challenges [J]. Adv. Mater., 2018, 30(12): 1704561
doi: 10.1002/adma.201704561
8 Lai S, Jeon J, Jang S K, et al. Surface group modification and carrier transport properties of layered transition metal carbides (Ti2CT x, T: -OH, -F and -O) [J]. Nanoscale. 2015, 7(46): 19390
doi: 10.1039/C5NR06513E
9 Shen C J, Wang L B, Zhang Heng, et al. Progress in electrochemical application of two-dimensional crystal materials MXene [J]. Mater. Review. 2016(30): 148
申长洁, 王李波, 张 恒 等. 二维晶体材料MXene的电化学应用研究进展 [J]. 材料导报, 2016, (30): 148
10 Wu Y, Ping N, Wu L, et al. 2D MXene/SnS2 composites as high-performance anodes for sodium ion batteries[J]. Chem. Eng. J., 2018, 334: 932
doi: 10.1016/j.cej.2017.10.007
11 Aslam M K, Algarni T S, Javed M S, et al. 2D MXene materials for sodium ion batteries: a review on energy storage [J]. J. Ener. Stor., 2021, 37: 102478
12 Nan J, Guo X, Xiao J, et al. Nanoengineering of 2D MXene-based materials for energy storage applications [J]. Small, 2019, 17(9): 1902085
doi: 10.1002/smll.201902085
13 Yuan W, Kai Y, Peng H, et al. A flexible VOCs sensor based on 3D Mxene framework with high sensing performance [J]. J. Mater. Chem. A, 2018, 6(37): 18116
doi: 10.1039/C8TA06928J
14 Xu Z, Zhang Z, Zhen Z. MXene-based materials for electrochemical energy storage [J]. J. Ener. Chem., 2018, 27(1): 73
15 Ma Z, Zhou X, Deng W, et al. 3D Porous MXene (Ti3C2)/reduced graphene oxide hybrid films for advanced lithium storage [J]. ACS Appl. Mater. Inter., 2018, 10(4): 3634
doi: 10.1021/acsami.7b17386
16 Tian Y, Yang C, Que W, et al. Ni foam supported quasi-core-shell structure of ultrathin Ti3C2 nanosheets through electrostatic layer-by-layer self-assembly as high rate-performance electrodes of supercapacitors [J]. J. Power Sources, 2017, 369(30): 78
doi: 10.1016/j.jpowsour.2017.09.085
17 Li L F, Yuan Z P, Fan R Z, et al. Low-temperature synthesis of pyrolytic-PVDF-coated SnO2@hard carbon nanocomposite anodes for Li-ion batteries [J]. J. Mater. Sci. Mater. Electron., 2020, 31: 6449
doi: 10.1007/s10854-020-03200-5
18 Li L F, Zeng B, Yuan Z P, et al. One step hydrothermal preparation of SnO2@c composite and it's lithium storage performance [J]. Chinese J. Mater. Res. Research., 2020, 8: 591
李玲芳, 曾 斌, 原志朋 等. 一步水热法制备纳米SnO2@C复合材料及其储锂性能研究 [J]. 材料研究学报, 2020, 8: 591
19 Chae Y, Kim S J, Cho S Y, et al. An investigation into the factors governing the oxidation of two-dimensional Ti3C2 MXene [J]. Nanoscale, 2019, 11: 8387
doi: 10.1039/C9NR00084D
20 Lotfi R, Naguib M, Yilmaz D E, et al. A comparative study on the oxidation of two-dimensional Ti3C2 MXene structures in different environments [J]. J. Mater. Chem. A, 2018, 6: 12733
doi: 10.1039/C8TA01468J
21 Halim J, Cook K M, Naguib M, et al. X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes) [J]. Appl. Surf. Sci., 2016, 362: 406
doi: 10.1016/j.apsusc.2015.11.089
22 Tian Q H, Zhang F, Zhang W, et al. Non-smooth carbon coating porous SnO2 quasi- nanocubes towards high lithium storage [J]. Electrochim. Acta, 2019, 307: 393
doi: 10.1016/j.electacta.2019.04.004
23 Vo V., Nguyen X. T., Jin Y. S., et al. Duong, SnO2, nanosheets/g-C3N4, composite with improved lithium storage capabilities [J]. Chem. Phys. Lett., 2017, 674: 42
doi: 10.1016/j.cplett.2017.02.057
24 Zuo D Q, Song S C, An C S, et al. ynthesis of sandwich-like structured Sn/SnOx@MXene composite through in-situ growth for highly reversible lithium storage [J]. Nano Energy, 2019, 62: 401
doi: 10.1016/j.nanoen.2019.05.062
25 Yu X, Dall'Agnese Y, Naguib M, et al. Prediction and characterization of MXene nanosheet anodes for non-lithium-ion batteries [J]. ACS Nano, 2014, 8(9): 9606
doi: 10.1021/nn503921j
26 Ghidiu M, Halim J, Kota S, et al. Ion-exchange and cation solvation reactions in Ti3C2 MXene [J]. Chem. Mater., 2016, 28(10): 3507
doi: 10.1021/acs.chemmater.6b01275
27 Zhang L, Zhang G, Wu H B, et al. Hierarchical tubular structures constructed by carbon-coated SnO2 nanoplates for highly reversible lithium storage [J]. Adv. Mater., 2013, 25: 2589
doi: 10.1002/adma.201300105
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[7] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[8] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[9] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[10] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[11] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[12] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[13] ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. 材料研究学报, 2023, 37(2): 102-110.
[14] ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. 材料研究学报, 2023, 37(2): 81-88.
[15] LUO Yu, CHEN Qiuyun, XUE Lihong, ZHANG Wuxing, YAN Youwei. Preparation of Double-layer Carbon Coated Na3V2(PO4)3 as Cathode Material for Sodium-ion Batteries by Ultrasonic-assisted Solution Combustion and Its Electrochemical Performance[J]. 材料研究学报, 2023, 37(2): 129-135.
No Suggested Reading articles found!