Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (8): 591-596    DOI: 10.11901/1005.3093.2021.375
ARTICLES Current Issue | Archive | Adv Search |
Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes
FANG Xiangming1, REN Shuai2, RONG Ping2, LIU Shuo2, GAO Shiyong2()
1.Department of Materials and Chemical Engineering, Taiyuan University, Taiyuan 030032, China
2.School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
Cite this article: 

FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes. Chinese Journal of Materials Research, 2022, 36(8): 591-596.

Download:  HTML  PDF(1505KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Ag-modified SnSe nanotubes (Ag/SnSe NTs) were fabricated by light irradiation assissted deposition process, therewith Ag nanoparticles were deposited on the surface of SnSe NTs at room temperature. The morphology, chemical composition and crystal structure of the prepared Ag/SnSe NTs were characterized by SEM, EDS, TEM and XRD. The results show that the average diameter of SnSe NTs covered with Ag nanoparticles is approximately 100~200 nm. In addition, the infrared detector based on Ag/SnSe NTs (IRPD) was assembled with Ag/SnSe NTs spin-coated on the conductive surface of FTO as the working electrode and the Pt electrode as the counter electrode. Afterwards, the infrared detection performance of Ag/SnSe NTs IRPD was further investigated by adopting infrared light of 830 nm as the simulated light source. Compared with the SnSe NTs IRPD, the maximum photocurrent density of Ag/SnSe NTs IRPD achieves 120 nA/cm2, simultaneously the rise time and decay time are declined to 0.109 s and 0.086 s, respectively, demonstrating the characteristics of good stability and repeatability.

Key words:  inorganic non-metallic materials      SnSe nanotubes      light deposition method      Ag nanoparticles      infrared detector     
Received:  24 June 2021     
ZTFLH:  TN36  
Fund: National Key Research and Development Program of China(2019YFA0705201);Natural Science Foundation of Heilongjiang Province(LH2020E033)
About author:  GAO Shiyong, Tel: (0451)86417763, E-mail: gaoshiyong@hit.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.375     OR     https://www.cjmr.org/EN/Y2022/V36/I8/591

Fig.1  SEM images of SnSe nanotubes (a, b) and Ag/SnSe nanotubes (c, d)
Fig.2  EDS pattern of Ag/SnSe nanotube
Fig.3  TEM (a) and high resolution TEM (b) images of Ag/SnSe nanotube
Fig.4  XRD pattern of Ag/SnSe nanotubes
Fig.5  Time dependent current response of the SnSe and Ag/SnSe nanotubes infrared photodetector (IRPD) measured under on/off of IR light illumination
Fig.6  Single-cycle photocurrent response of the IRPD based on SnSe and Ag/SnSe nanotubes
Fig.7  Schematic illustration of the possible IR detection mechanism of the Ag/SnSe nanotubes IRPD
1 Zeng Y K, Liu M D, Huang Y Q. Infrared detector array with PLZT thick films on silicon-based microstructure tunnels [J]. Chin. J. Mater. Res., 2004, 18: 308
曾亦可, 刘梅冬, 黄焱球. Si基微绝热结构PLZT厚膜红外探测器阵列 [J]. 材料研究学报, 2004, 18: 308
2 Li A Z, Zheng Y L, Lin C. MBE grown antimonide mid-infrared lasers and photodetectors [J]. Chin. J. Mater. Res., 2001, 15: 29
李爱珍, 郑燕兰, 林 春. 用分子束外延制备红外锑化物激光器和探测器材料 [J]. 材料研究学报, 2001, 15: 29
3 Rogalski A. Infrared detectors: an overview [J]. Infrared Phys. Technol., 2002, 43: 187
doi: 10.1016/S1350-4495(02)00140-8
4 Zhang M, Cao M S, Shu J C, et al. Electromagnetic absorber converting radiation for multifunction [J]. Mater. Sci. Eng., 2021, 145R: 100627
5 Mi L F, Wang H, Zhang Y, et al. High performance visible-near-infrared PbS-quantum-dots/indium Schottky diodes for photodetectors [J]. Nanotechnology, 2017, 28: 055202
6 Luo B, Zhao J, Cheng B C, et al. A surface state-controlled, high-performance, self-powered photovoltaic detector based on an individual SnS nanorod with a symmetrical electrode structure [J]. J. Mater. Chem. C, 2018, 6: 9071
doi: 10.1039/C8TC01503A
7 Xu H Y, Hao L Z, Liu H, et al. Flexible SnSe photodetectors with ultrabroad spectral response up to 10.6 μm enabled by photobolometric effect [J]. ACS Appl. Mater. Interfaces, 2020, 12: 35250
doi: 10.1021/acsami.0c09561
8 Yao J D, Zheng Z Q, Yang G W. All‐layered 2D optoelectronics: a high-performance UV-vis-NIR broadband SnSe photodetector with Bi2Te3 topological insulator electrodes [J]. Adv. Funct. Mater., 2017, 27: 1701823
doi: 10.1002/adfm.201701823
9 Murali K, Majumdar K. Self-powered, highly sensitive, high-speed photodetection using ITO/WSe2/SnSe2 vertical heterojunction [J]. IEEE Trans. Electron Dev., 2018, 65: 4141
10 Qiao H, Huang Z Y, Ren X H, et al. Photoresponse improvement in liquid-exfoliated SnSe nanosheets by reduced graphene oxide hybridization [J]. J. Mater. Sci., 2018, 53: 4371
doi: 10.1007/s10853-017-1878-8
11 Xue H, Dai Y Y, Kim W, et al. High photoresponsivity and broadband photodetection with a band-engineered WSe2/SnSe2 heterostructure [J]. Nanoscale, 2019, 11: 3240
doi: 10.1039/C8NR09248F
12 Shankar K, Tep K C, Mor G K, et al. An electrochemical strategy to incorporate nitrogen in nanostructured TiO2 thin films: modification of bandgap and photoelectrochemical properties [J]. J. Phys. D: Appl. Phys., 2006, 39: 2361
doi: 10.1088/0022-3727/39/11/008
13 Zhao H M, Chen Y, Quan X, et al. Preparation of Zn-doped TiO2 nanotubes electrode and its application in pentachlorophenol photoelectrocatalytic degradation [J]. Chin. Sci. Bull., 2007, 52: 1456
doi: 10.1007/s11434-007-0170-8
14 Hao L Z, Wang Z G, Xu H Y, et al. 2D SnSe/Si heterojunction for self-driven broadband photodetectors [J]. 2D Mater., 2019, 6: 034004
15 Yang L X, He D M, Cai Q Y, et al. Fabrication and catalytic properties of Co-Ag-Pt nanoparticle-decorated titania nanotube arrays [J]. J. Phys. Chem. C, 2007, 111: 8214
doi: 10.1021/jp067207k
16 Georgekutty R, Seery M K, Pillai S C. A highly efficient Ag-ZnO photocatalyst: synthesis, properties, and mechanism [J]. J. Phys. Chem. C, 2008, 112: 13563
doi: 10.1021/jp802729a
17 Zeng Y Y, Pan X H, Lu B, et al. Fabrication of flexible self-powered UV detectors based on ZnO nanowires and the enhancement by the decoration of Ag nanoparticles [J]. RSC Adv., 2016, 6: 31316
doi: 10.1039/C6RA02922A
18 Chan S C, Barteau M A. Preparation of highly uniform Ag/TiO2 and Au/TiO2 supported nanoparticle catalysts by photodeposition [J]. Langmuir, 2005, 21: 5588
pmid: 15924494
19 Taing J, Cheng M H, Hemminger J C. Photodeposition of Ag or Pt onto TiO2 nanoparticles decorated on step edges of HOPG [J]. ACS Nano, 2011, 5: 6325
doi: 10.1021/nn201396v
20 He J X, Yang P J, Sato H, et al. Effects of Ag-photodeposition on photocurrent of an ITO electrode modified by a hybrid film of TiO2 nanosheets [J]. J. Electroanal. Chem., 2004, 566: 227
doi: 10.1016/j.jelechem.2003.11.031
21 Liu Y, Zhang X H, Su J, et al. Ag nanoparticles@ZnO nanowire composite arrays: an absorption enhanced UV photodetector [J]. Opt. Express, 2014, 22: 30148
doi: 10.1364/OE.22.030148
22 Devi N M, Singh N K. Plasmon-induced Ag decorated CeO2 nanorod array for photodetector application [J]. Nanotechnology, 2020, 31: 225203
doi: 10.1088/1361-6528/ab76e9
23 Joshna P, Hazra A, Chappanda K N, et al. Fast response of UV photodetector based on Ag nanoparticles embedded uniform TiO2 nanotubes array [J]. Semicond. Sci. Technol., 2020, 35: 015001
24 Hao L Z, Du Y J, Wang Z G, et al. Wafer-size growth of 2D layered SnSe films for UV-Visible-NIR photodetector arrays with high responsitivity [J]. Nanoscale, 2020, 12: 7358
doi: 10.1039/D0NR00319K
25 Pawbake A S, Jadkar S R, Late D J. High performance humidity sensor and photodetector based on SnSe nanorods [J]. Mater. Res. Express, 2016, 3: 105038
doi: 10.1088/2053-1591/3/10/105038
26 Ren S, Liu S, Gao S Y, et al. A facile solution synthesis of scaly-like hollow SnSe nanotubes for self-powered infrared sensor [J]. J. Alloys Compd., 2021, 879: 160446
doi: 10.1016/j.jallcom.2021.160446
27 Bai H J, Yang B S, Chai C J, et al. Green synthesis of silver nanoparticles using Rhodobacter sphaeroides [J]. World J. Microbiol. Biotechnol., 2011, 27: 2723
doi: 10.1007/s11274-011-0747-x
28 Gatemala H, Tongsakul D, Naranaruemol S, et al. Synthesis of silver microfibers with ultrahigh aspect ratio by galvanic replacement reaction [J]. Mater. Chem. Phys., 2019, 237: 121872
doi: 10.1016/j.matchemphys.2019.121872
29 Zhou J Y, Chen L L, Wang Y Q, et al. An overview on emerging photoelectrochemical self-powered ultraviolet photodetectors [J]. Nanoscale, 2016, 8: 50
doi: 10.1039/C5NR06167A
30 Xie Y R, Wei L, Li Q H, et al. High-performance self-powered UV photodetectors based on TiO2 nano-branched arrays [J]. Nanotechnology, 2014, 25: 075202
31 McDaniel H, Fuke N, Makarov N S, et al. An integrated approach to realizing high-performance liquid-junction quantum dot sensitized solar cells [J]. Nat. Commun., 2013, 4: 2887
doi: 10.1038/ncomms3887 pmid: 24322379
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[12] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[13] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
[14] MENG Xiangdong, ZHEN Chao, LIU Gang, CHENG Huiming. Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting[J]. 材料研究学报, 2022, 36(4): 241-249.
[15] WANG Yihao, WU Qiong, LI Pengfei, YANG Zhanxin, ZHANG Hongtao. Preparation and Supercapacitor Performance of Few-Layered Ti3C2 with High Specific Capacitance[J]. 材料研究学报, 2022, 36(3): 183-190.
No Suggested Reading articles found!