|
|
Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes |
FANG Xiangming1, REN Shuai2, RONG Ping2, LIU Shuo2, GAO Shiyong2( ) |
1.Department of Materials and Chemical Engineering, Taiyuan University, Taiyuan 030032, China 2.School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China |
|
Cite this article:
FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes. Chinese Journal of Materials Research, 2022, 36(8): 591-596.
|
Abstract Ag-modified SnSe nanotubes (Ag/SnSe NTs) were fabricated by light irradiation assissted deposition process, therewith Ag nanoparticles were deposited on the surface of SnSe NTs at room temperature. The morphology, chemical composition and crystal structure of the prepared Ag/SnSe NTs were characterized by SEM, EDS, TEM and XRD. The results show that the average diameter of SnSe NTs covered with Ag nanoparticles is approximately 100~200 nm. In addition, the infrared detector based on Ag/SnSe NTs (IRPD) was assembled with Ag/SnSe NTs spin-coated on the conductive surface of FTO as the working electrode and the Pt electrode as the counter electrode. Afterwards, the infrared detection performance of Ag/SnSe NTs IRPD was further investigated by adopting infrared light of 830 nm as the simulated light source. Compared with the SnSe NTs IRPD, the maximum photocurrent density of Ag/SnSe NTs IRPD achieves 120 nA/cm2, simultaneously the rise time and decay time are declined to 0.109 s and 0.086 s, respectively, demonstrating the characteristics of good stability and repeatability.
|
Received: 24 June 2021
|
|
Fund: National Key Research and Development Program of China(2019YFA0705201);Natural Science Foundation of Heilongjiang Province(LH2020E033) |
About author: GAO Shiyong, Tel: (0451)86417763, E-mail: gaoshiyong@hit.edu.cn
|
1 |
Zeng Y K, Liu M D, Huang Y Q. Infrared detector array with PLZT thick films on silicon-based microstructure tunnels [J]. Chin. J. Mater. Res., 2004, 18: 308
|
|
曾亦可, 刘梅冬, 黄焱球. Si基微绝热结构PLZT厚膜红外探测器阵列 [J]. 材料研究学报, 2004, 18: 308
|
2 |
Li A Z, Zheng Y L, Lin C. MBE grown antimonide mid-infrared lasers and photodetectors [J]. Chin. J. Mater. Res., 2001, 15: 29
|
|
李爱珍, 郑燕兰, 林 春. 用分子束外延制备红外锑化物激光器和探测器材料 [J]. 材料研究学报, 2001, 15: 29
|
3 |
Rogalski A. Infrared detectors: an overview [J]. Infrared Phys. Technol., 2002, 43: 187
doi: 10.1016/S1350-4495(02)00140-8
|
4 |
Zhang M, Cao M S, Shu J C, et al. Electromagnetic absorber converting radiation for multifunction [J]. Mater. Sci. Eng., 2021, 145R: 100627
|
5 |
Mi L F, Wang H, Zhang Y, et al. High performance visible-near-infrared PbS-quantum-dots/indium Schottky diodes for photodetectors [J]. Nanotechnology, 2017, 28: 055202
|
6 |
Luo B, Zhao J, Cheng B C, et al. A surface state-controlled, high-performance, self-powered photovoltaic detector based on an individual SnS nanorod with a symmetrical electrode structure [J]. J. Mater. Chem. C, 2018, 6: 9071
doi: 10.1039/C8TC01503A
|
7 |
Xu H Y, Hao L Z, Liu H, et al. Flexible SnSe photodetectors with ultrabroad spectral response up to 10.6 μm enabled by photobolometric effect [J]. ACS Appl. Mater. Interfaces, 2020, 12: 35250
doi: 10.1021/acsami.0c09561
|
8 |
Yao J D, Zheng Z Q, Yang G W. All‐layered 2D optoelectronics: a high-performance UV-vis-NIR broadband SnSe photodetector with Bi2Te3 topological insulator electrodes [J]. Adv. Funct. Mater., 2017, 27: 1701823
doi: 10.1002/adfm.201701823
|
9 |
Murali K, Majumdar K. Self-powered, highly sensitive, high-speed photodetection using ITO/WSe2/SnSe2 vertical heterojunction [J]. IEEE Trans. Electron Dev., 2018, 65: 4141
|
10 |
Qiao H, Huang Z Y, Ren X H, et al. Photoresponse improvement in liquid-exfoliated SnSe nanosheets by reduced graphene oxide hybridization [J]. J. Mater. Sci., 2018, 53: 4371
doi: 10.1007/s10853-017-1878-8
|
11 |
Xue H, Dai Y Y, Kim W, et al. High photoresponsivity and broadband photodetection with a band-engineered WSe2/SnSe2 heterostructure [J]. Nanoscale, 2019, 11: 3240
doi: 10.1039/C8NR09248F
|
12 |
Shankar K, Tep K C, Mor G K, et al. An electrochemical strategy to incorporate nitrogen in nanostructured TiO2 thin films: modification of bandgap and photoelectrochemical properties [J]. J. Phys. D: Appl. Phys., 2006, 39: 2361
doi: 10.1088/0022-3727/39/11/008
|
13 |
Zhao H M, Chen Y, Quan X, et al. Preparation of Zn-doped TiO2 nanotubes electrode and its application in pentachlorophenol photoelectrocatalytic degradation [J]. Chin. Sci. Bull., 2007, 52: 1456
doi: 10.1007/s11434-007-0170-8
|
14 |
Hao L Z, Wang Z G, Xu H Y, et al. 2D SnSe/Si heterojunction for self-driven broadband photodetectors [J]. 2D Mater., 2019, 6: 034004
|
15 |
Yang L X, He D M, Cai Q Y, et al. Fabrication and catalytic properties of Co-Ag-Pt nanoparticle-decorated titania nanotube arrays [J]. J. Phys. Chem. C, 2007, 111: 8214
doi: 10.1021/jp067207k
|
16 |
Georgekutty R, Seery M K, Pillai S C. A highly efficient Ag-ZnO photocatalyst: synthesis, properties, and mechanism [J]. J. Phys. Chem. C, 2008, 112: 13563
doi: 10.1021/jp802729a
|
17 |
Zeng Y Y, Pan X H, Lu B, et al. Fabrication of flexible self-powered UV detectors based on ZnO nanowires and the enhancement by the decoration of Ag nanoparticles [J]. RSC Adv., 2016, 6: 31316
doi: 10.1039/C6RA02922A
|
18 |
Chan S C, Barteau M A. Preparation of highly uniform Ag/TiO2 and Au/TiO2 supported nanoparticle catalysts by photodeposition [J]. Langmuir, 2005, 21: 5588
pmid: 15924494
|
19 |
Taing J, Cheng M H, Hemminger J C. Photodeposition of Ag or Pt onto TiO2 nanoparticles decorated on step edges of HOPG [J]. ACS Nano, 2011, 5: 6325
doi: 10.1021/nn201396v
|
20 |
He J X, Yang P J, Sato H, et al. Effects of Ag-photodeposition on photocurrent of an ITO electrode modified by a hybrid film of TiO2 nanosheets [J]. J. Electroanal. Chem., 2004, 566: 227
doi: 10.1016/j.jelechem.2003.11.031
|
21 |
Liu Y, Zhang X H, Su J, et al. Ag nanoparticles@ZnO nanowire composite arrays: an absorption enhanced UV photodetector [J]. Opt. Express, 2014, 22: 30148
doi: 10.1364/OE.22.030148
|
22 |
Devi N M, Singh N K. Plasmon-induced Ag decorated CeO2 nanorod array for photodetector application [J]. Nanotechnology, 2020, 31: 225203
doi: 10.1088/1361-6528/ab76e9
|
23 |
Joshna P, Hazra A, Chappanda K N, et al. Fast response of UV photodetector based on Ag nanoparticles embedded uniform TiO2 nanotubes array [J]. Semicond. Sci. Technol., 2020, 35: 015001
|
24 |
Hao L Z, Du Y J, Wang Z G, et al. Wafer-size growth of 2D layered SnSe films for UV-Visible-NIR photodetector arrays with high responsitivity [J]. Nanoscale, 2020, 12: 7358
doi: 10.1039/D0NR00319K
|
25 |
Pawbake A S, Jadkar S R, Late D J. High performance humidity sensor and photodetector based on SnSe nanorods [J]. Mater. Res. Express, 2016, 3: 105038
doi: 10.1088/2053-1591/3/10/105038
|
26 |
Ren S, Liu S, Gao S Y, et al. A facile solution synthesis of scaly-like hollow SnSe nanotubes for self-powered infrared sensor [J]. J. Alloys Compd., 2021, 879: 160446
doi: 10.1016/j.jallcom.2021.160446
|
27 |
Bai H J, Yang B S, Chai C J, et al. Green synthesis of silver nanoparticles using Rhodobacter sphaeroides [J]. World J. Microbiol. Biotechnol., 2011, 27: 2723
doi: 10.1007/s11274-011-0747-x
|
28 |
Gatemala H, Tongsakul D, Naranaruemol S, et al. Synthesis of silver microfibers with ultrahigh aspect ratio by galvanic replacement reaction [J]. Mater. Chem. Phys., 2019, 237: 121872
doi: 10.1016/j.matchemphys.2019.121872
|
29 |
Zhou J Y, Chen L L, Wang Y Q, et al. An overview on emerging photoelectrochemical self-powered ultraviolet photodetectors [J]. Nanoscale, 2016, 8: 50
doi: 10.1039/C5NR06167A
|
30 |
Xie Y R, Wei L, Li Q H, et al. High-performance self-powered UV photodetectors based on TiO2 nano-branched arrays [J]. Nanotechnology, 2014, 25: 075202
|
31 |
McDaniel H, Fuke N, Makarov N S, et al. An integrated approach to realizing high-performance liquid-junction quantum dot sensitized solar cells [J]. Nat. Commun., 2013, 4: 2887
doi: 10.1038/ncomms3887
pmid: 24322379
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|