|
|
Temperature Dependent Luminescence Properties of Graphene Oxide |
LI Fulu1, HAN Chunmiao1, GAO Jiawang1, JIANG Jian1, XU Hui2, LI Bing1( ) |
1.College of Physics, Changchun Normal University, Changchun 130032, China 2.Department of Ophthalmology, the First Hospital of Jilin University, Changchun 130021, China |
|
Cite this article:
LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide. Chinese Journal of Materials Research, 2022, 36(8): 597-601.
|
Abstract The luminescence properties of GO were investigated by means of photoluminescence spectra and absorption spectra. It follows that the luminescence of GO originates from sp2C clusters in lamellar. Sp2C clusters are surrounded by high barrier oxidation functional groups (sp3C), forming a multi-quantum well structure. There are sp2C clusters of different sizes in GO, and the band gap is related to the size. The smaller the size, the wider the band gap, so that the luminous coverage is wider and depends on the excitation wavelength. The emission behavior of different local states in GO was investigated by changing the excitation wavelength and temperature. The results show that the thermal activation energy of sp2C clusters excited by 514 nm was 56 MeV higher than that excited by 830 nm. Temperature has little effect on smaller sp2C clusters, because the smaller the size, the stronger the confinement effect and the radiative transition probability of electron hole pair is increased.
|
Received: 17 August 2021
|
|
Fund: National Natural Science Foundation of China(11404036);Jilin Provincial Science & Technology Department(20210101164JC);Science and Technology Project of Jilin Provincial Department of Education(JJKH20220824KJ);Natural Science Foundation of Changchun Normal University(2020-010) |
About author: LI Bing, Tel: 13080016697, E-mail: libing@ccsfu.edu.cn
|
1 |
Stoller M D, Park S J, Zhu Y W, et al. Graphene-based ultracapacitors [J]. Nano. Lett., 2008, 8: 3498
doi: 10.1021/nl802558y
pmid: 18788793
|
2 |
Vivekchand S R C, Rout C S, Subrahmanyam K S, et al. Graphene-based electrochemical supercapacitors [J]. J. Chem. Sci., 2008, 120: 9
doi: 10.1007/s12039-008-0002-7
|
3 |
Ponomarenko L A, Sehedin F, Katsnelson M I, et al. Chaotic dirac billiard in graphene quantum dots [J]. Science, 2008, 320: 356
doi: 10.1126/science.1154663
pmid: 18420930
|
4 |
Said A R, Said K, Awwad F, et al. Design, fabrication, and characterization of Hg2+ sensorbased on graphite oxide and metallic nanoclusters [J]. Sensor Actuat. A. Phys., 2018, 271: 270
doi: 10.1016/j.sna.2018.01.033
|
5 |
Yang J K, Zhang X T, Li B, et al. Photocatalytic activities of heterostructured TiO2-graphene porous microspheres prepared by ultrasonic spray pyrolysis [J]. J. Alloys Compd., 2014, 584: 180
doi: 10.1016/j.jallcom.2013.08.203
|
6 |
Li B, Zhang X T, Li X H, et al. Photo-assisted preparation and patterning of large-area reduced graphene oxide-TiO2 conductive thin film [J]. Chem. Commun., 2010, 46: 3499
doi: 10.1039/c002200d
|
7 |
Ma F, Guo Z K, Xu K W, et al. First-principle study of energy band structure of armchair graphene nanoribbons [J]. Solid State Commu., 2012, 152: 1089
doi: 10.1016/j.ssc.2012.04.058
|
8 |
Zagonel L F, Mazzucco S, Tence M, et al. Nanometer scale spectral imaging of quantum emitters in nanowires and its correlation to their atomically resolved structure [J]. Nano. Lett., 2011, 11: 568
doi: 10.1021/nl103549t
|
9 |
Zhang Y B, Tan Y W, Stormer H L, et al. Experimental observation of the quantum Hall effect and Berry's phase in graphene [J]. Nature, 2005, 438: 201
doi: 10.1038/nature04235
|
10 |
Luo Z T, Vora P M, Mele E J, et al. Photoluminescence and band gap modulation in graphene oxide [J]. Appl. Phys. Lett., 2009, 94: 111909
doi: 10.1063/1.3098358
|
11 |
Eda G, Lin Y Y, Mattevi C, et al. Blue photoluminescence from chemically derived graphene oxide [J]. Adv. Mater., 2010, 22: 505
doi: 10.1002/adma.200901996
|
12 |
Pan D Y, Zhang J C, Li Z, et al. Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots [J]. Adv. Mater., 2010, 22: 734
doi: 10.1002/adma.200902825
|
13 |
Li B, Gao F, Yang G M, et al. Synthesis and characterization of graphene film via photo-chemical reduction of graphene oxide [J]. Chem. J. Chinese Universities, 2014, 35(12): 2612
|
14 |
Li B, Zhang X T, Chen P, et al. Waveband-dependent photochemical processing of graphene oxide in fabricating reduced graphene oxide film and graphene oxide-Ag nanoparticles film [J]. RSC. Adv., 2014, 4: 2404
doi: 10.1039/C3RA45355C
|
15 |
Zhao M X, Meng Z, Li H P, et al. Photodegradation of antibiotic in environmental water by graphene oxide modulation bismuth molybdate under visible light irradiation [J]. Chem. J. Chinese Universities, 2020, 41(11): 2479
|
16 |
Lee J, Kim JG, Kim S C, et al. Biosensors based on graphene oxide and its biomedical application [J]. Adv. Drug. Deliv. Rev., 2016, 105: 275
doi: 10.1016/j.addr.2016.06.001
|
17 |
Shen X Q, Li Z, Wang G, et al. Logic and reversible dual DNA detection based on the assembly of graphene oxide and DNA-templated quantum dots [J]. Chem. J. Chinese Universities, 2017, 38(12): 2176
|
18 |
Sun X M, Liu Z, Welsher K, et al. Nano-graphene oxide for cellular imaging and drug delivery [J]. Nano. Res., 2008, 1: 203
doi: 10.1007/s12274-008-8021-8
|
19 |
Hununers W S, Offeman R E. Preparation of graphitic oxide [J]. J. Am. Chem. Soc., 1958, 80: 1339
doi: 10.1021/ja01539a017
|
20 |
Li D, Müller M B, Gilje S, et al. Processable aqueous dispersions of graphene nanosheets [J]. Nat. Nanotechnol., 2008, 3: 101
doi: 10.1038/nnano.2007.451
|
21 |
Li X Y, Zhang G Y, Bai X M, et al. Highly conducting graphene sheets and Langmuir-Blodgett films [J]. Nat. Nanotechnol., 2008, 3: 538
doi: 10.1038/nnano.2008.210
|
22 |
Urbaeh F. The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids [J]. Phys.Rev., 1953, 92: 1324
|
23 |
Wu J X, Xu F, Ye P, et al. The effects of nitrogen partial pressure on the microstructure of amorphous carbon nitride films [J]. Integr. Ferroelectr., 2017, 180(1): 139
doi: 10.1080/10584587.2017.1338917
|
24 |
Prasad N, Tanwar S, Mukhopadhyay S, et al. Spatio-temporal analysis of the electric field-induced solid-state reduction dynamics of graphene oxide thin films for controlled band-gap modulation [J]. J. Phys. Chem. C., 2020, 124: 21874
doi: 10.1021/acs.jpcc.0c07139
|
25 |
Adhikary S, Tian X M, Adhikari S, et al. Bonding defects and optical band gaps of DLC films deposited by microwave surface-wave plasma CVD [J]. Diam. Relat. Mater., 2005, 14: 1832
doi: 10.1016/j.diamond.2005.08.030
|
26 |
Essig S, Marquardt C W, Vijayaraghavan A, et al. Phonon-Assisted Electroluminescence from Metallic Carbon Nanotubes and Graphene [J]. Nano. Lett., 2010, 10: 1589
doi: 10.1021/nl9039795
pmid: 20405819
|
27 |
Skumanich A, Frova A, Amer N M. Urbach tail and gap states in hydrogenated a-SiC and a-SiGe alloys [J]. Solid State Commun., 1985, 54: 597
doi: 10.1016/0038-1098(85)90086-9
|
28 |
Gokus T, Nair R R, Bonetti A, et al. Making Graphene Luminescent by Oxygen Plasma Treatment [J]. ACS. Nano., 2009, 3: 3963
doi: 10.1021/nn9012753
pmid: 19925014
|
29 |
Guo H L, Wang X F, Qian Q Y, et al. A Green Approach to the Synthesis of Graphene Nanosheets [J]. ACS. Nano., 2009, 3: 2653
doi: 10.1021/nn900227d
|
30 |
Robertson J. π-bonded clusters in amorphous carbon materials [J]. Philos. Mag. B., 1992, 66: 199
doi: 10.1080/13642819208224583
|
31 |
Robertson J. Diamond-like amorphous carbon [J]. Mater. Sci. Eng. R., 2002, 37: 129
doi: 10.1016/S0927-796X(02)00005-0
|
32 |
Vassilyev V A, Volkov A S, Musabekov E U, et al. Photoluminescence of amorphous hydrogenated silicon-carbon (a-SiC:H) films [J]. J.Non. Cryst.Solids, 1989, 114: 507
|
33 |
Lou Q, Qu S N, Jing P T, et al. Water-triggered luminescent "nano-bombs" based on supra-(carbon nanodots) [J]. Adv. Mater., 2015, 27: 1389
doi: 10.1002/adma.201403635
|
34 |
Chambers M D, Clarke D R. Doped oxides for high-temperature luminescence and lifetime thermometry [J]. Annu. Rev. Mater. Res., 2009, 39: 325
doi: 10.1146/annurev-matsci-112408-125237
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|