Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (12): 933-944    DOI: 10.11901/1005.3093.2021.556
ARTICLES Current Issue | Archive | Adv Search |
Preparation of Phosphorus-containing Graphene and Corrosion Resistance of Composite Coating
LI Yufeng1,2(), ZHANG Nianfei1, LIU Lishuang1, ZHAO Tiantian1, GAO Wenbo1, GAO Xiaohui1
1.College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
2.College of Light Industry and Textile, Qiqihar University, Qiqihar 161006, China
Cite this article: 

LI Yufeng, ZHANG Nianfei, LIU Lishuang, ZHAO Tiantian, GAO Wenbo, GAO Xiaohui. Preparation of Phosphorus-containing Graphene and Corrosion Resistance of Composite Coating. Chinese Journal of Materials Research, 2022, 36(12): 933-944.

Download:  HTML  PDF(31236KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The phosphorus-containing graphene (PhA-G) was prepared by pyrolysis method with phytic acid (PhA) as raw material, and next the PhA-G/SiR composite anticorrosion coating was prepared with silicone resin (SiR) as film forming material. The structure and morphology of phosphorus-containing graphene was characterized by means of Raman spectroscope, X-ray photoelectron spectroscope (XPS), scanning electron microscope (SEM), transmission electron microscope (TEM) and atomic force microscope (AFM). The prepared coatings with the different additive amount of PhA-G (1%~4% in mass fraction), were comparatively examined by means of measurements of contact angle, water absorption, potentiodynamic polarization curves, electrochemical impedance spectroscopy (EIS), as well as salt spray test. The results show that the protectiveness of PhA-G/SiR composite coatings for metal substrate is greater than that of the plain SiR coating, and graphene oxide/silicone resin (GO/SiR) coating. The PhA-G/SiR composite coating exhibits good hydrophobicity and excellent corrosion resistance when the mass fraction of PhA-G is 3%. Correspondingly, which exhibits hydrophobic contact angle of 103.5° and water absorption rate of 3.72%, while corrosion current density of 3.53×10-10 A/cm2 and electrochemical impedance as high as 3.82×107 Ω·cm2 in 3.5%(mass fraction) NaCl solution. Furthermore, the PhA-G/SiR composite coating presents excellent resistance to salt spray testing, up to above 960 h.

Key words:  materials failure and protection      corrosion resistance      phosphorus-containing graphene      silicone resin      composite coating     
Received:  26 September 2021     
ZTFLH:  TB304  
Fund: the Fundamental Research Funds in Heilongjiang Provincial Universities(135509128)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.556     OR     https://www.cjmr.org/EN/Y2022/V36/I12/933

Fig.1  Raman spectra of GO and PhA-G
Fig.2  XPS spectra of GO and PhA-G
Fig.3  SEM images of GO (a, b) and PhA-G (c, d)
Fig.4  TEM images of GO (a, b) and PhA-G (c, d)
Fig.5  AFM image (a) and thickness analysis results of PhA-G sample (b)
Fig.6  Surface morphologies of PhA-G/SiR composite coatings containing different mass fractions of PhA-G: (a) 1%, (b) 2%, (c) 3%, (d) 4%
Fig.7  Effects of the content of PhA-G on the contact angle and water absorption of the composite coating
Fig.8  Nyquist and Bode plots of SiR coating, GO/SiR coating and four PhA-G/SiR coatings after immersion in 3.5% NaCl solution for (a, b) 0 h, (c, d) 48 h, (e, f) 96 h, (g, h) 144 h, (i, j) 192 h
Fig.9  Potentiodynamic polarization curves of bare steel, SiR coating, GO/SiR coating and four PhA-G/SiR coatings
SampleIcorr / A·cm-2E / VbabcCR / mm·a-1Rp / Ω·cm2PE / %
Bare steel1.66×10-5-0.8913.590.8241.28×10-11.75×104-
SiR2.95×10-7-0.1713.080.4132.28×10-35.36×10598.21
GO/SiR1.76×10-7-0.1202.920.6451.36×10-31.31×10698.93
1%PhA-G/SiR4.78×10-8-0.2421.951.1503.69×10-46.58×10699.71
2%PhA-G/SiR2.45×10-8-0.3062.420.8321.89×10-41.10×10799.85
3%PhA-G/SiR3.53×10-10-0.1180.770.3272.73×10-62.82×10899.99
4%PhA-G/SiR3.58×10-9-0.2521.102.0602.76×10-58.71×10799.97
Table 1  Fitting data of polarization curves
Fig.10  Macro-photos of (a) SiR, (b) GO/SiR, (c) 1% PhA-G/SiR, (d) 2% PhA-G/SiR, (e) 3% PhA-G/SiR, (f) 4% PhA-G/SiR coatings after salt spray test for different time, and steel substrate after removing the corroded coatings
Fig.11  Microscope photos of the surfaces of steel substrates after salt spray test for 960 h and then removal of (a) SiR, (b) GO/SiR, (c) 1% PhA-G/SiR, (d) 2% PhA-G/SiR, (e) 3% PhA-G/SiR, (f) 4% PhA-G/SiR surface coatings
Fig.12  Schematic diagram of corrosion prevention mechanism of PhA-G/SiR composite coating
1 BERRY V. Impermeability of graphene and its applications [J]. Carbon, 2013, 62: 1
doi: 10.1016/j.carbon.2013.05.052
2 Qi K, Sun Y M, Duan H W, et al. A corrosion-protective coating based on a solution-processable polymer-grafted graphene oxide nanocomposite [J]. Corros. Sci., 2015, 98: 500
doi: 10.1016/j.corsci.2015.05.056
3 Wang N, Chen J S, Wang S W, et al. Application of aminated grap-hite oxide for waterborne anti-corrosion and fireproof coatings [J]. Chin. J. Mater. Res., 2018, 32(10): 721
王 娜, 陈俊声, 王树伟 等. 氨基化氧化石墨烯在水性防腐防火一体化涂料中的应用 [J]. 材料研究学报, 2018, 32(10): 721
4 Palaniappan N, Cole I, Kuznetsov A E. Experimental and computational studies of graphene oxide covalently functionalized by octylamine: electrochemical stability, hydrogen evolution, and corrosion inhibition of the AZ13 Mg alloy in 3.5%NaCl [J]. RSC Adv., 2020, 10(19): 11426
doi: 10.1039/c9ra10702a pmid: 35495345
5 Wen S, Ma J. Synergistic effect of polyvinylpyrrolidone noncovalently modified graphene and epoxy resin in anticorrosion application [J]. High. Perform. Polym., 2020, 33(2): 146
doi: 10.1177/0954008320942293
6 Ning L, Wang D D, Wang L, et al. Interesting corrosion inhibition performance and mechanism of two silanes containing multiple phosphate group [J]. Silicon-Neth., 2019, 12(6): 1455
7 Hermas A A, Wahdan M H, Ahmed E M. Phosphate-doped polyaniline/Al2O3 nanocomposite coating for protection of stainless steel [J]. Anti-Corros. Method. M, 2020, 64(5): 491
8 Zhu K, Li J Y, Fei G Q. Anticorrosive performance of phosphorylated graphene oxide applied at waterborne epoxy coating [J]. China Adhes., 2018, 27(9): 501
朱 科, 李菁熠, 费贵强. 磷酸化氧化石墨烯对水性环氧涂料防腐增强作用研究 [J]. 中国胶粘剂, 2018, 27(9): 501
9 Huang H, Tian Y, Xie Y, et al. Modification of graphene oxide with acrylate phosphorus monomer via thiol-Michael addition click reaction to enhance the anti-corrosive performance of waterborne epoxy coating [J]. Prog. Org. Coat., 2020, 146: 105724
10 Ding J, Rahman O U, Peng W, et al. A novel hydroxyl epoxy phosp hate monomer enhancing the anticorrosive performance of waterborne Graphene/Epoxy coatings [J]. Appl. Surf. Sci., 2018, 427: 981
doi: 10.1016/j.apsusc.2017.08.224
11 Albero J, Vidal A, Migani A, et al. Phosphorus-doped graphene as a metal-free material for thermochemical water reforming at unusually mild conditions [J]. Acs. Sustain. Chem. Eng., 2019, 7(1): 838
doi: 10.1021/acssuschemeng.8b04462
12 Suleiman R, Estaitie M, Mizanurahman M. Hybrid organosiloxane coatings containing epoxide precursors for protecting mild steel against corrosion in a saline medium [J]. J. Appl. Polym. Sci., 2016, 133(38): 1
13 Zhang L, Shi Z, Hu W H, et al. Curing mechanism, heat resistance, and anticorrosion properties of a furan/methyl phenyl silicone coating [J]. Polym. Advan. Technol., 2018, 29(7): 1913
doi: 10.1002/pat.4300
14 Wu J X, Xu H, Zhang J. Raman spectroscopy of graphene [J]. Atca. Chim. Sin. 2014, 72(3): 301
吴娟霞, 徐 华, 张 锦. 拉曼光谱在石墨烯结构表征中的应用 [J]. 化学学报, 2014, 72(3): 301
doi: 10.6023/A13090936
15 Wang C, Jia Y J, Liu Z C, et al. Preparation and characterization of phosphorus-doped graphene [J]. Ind. Catal., 2014, 22(7): 510
王 灿, 贾银娟, 刘志成 等. 磷掺杂石墨烯的制备与表征 [J]. 工业催化, 2014, 22(7): 510
16 Yuan B H, Xing W Y, Hu Y X, et al. Boron/phosphorus doping for retarding the oxidation of reduced graphene oxide [J]. Carbon., 2016, 101: 152
doi: 10.1016/j.carbon.2016.01.080
17 Shen X Y, Li X D, Zhao F H, et al. Preparation and structure study of phosphorus-doped porous graphdiyne and its efficient lithium storage application [J]. 2D Mater., 2019, 6(3): 035020
18 Balaji S S, Ganesh P A, Moorthy M, et al. Efficient electrocatalytic activity for oxygen reduction reaction by phosphorus-doped graphene using supercritical fluid processing [J]. B. Mater. Sci., 2020, 43: 151
doi: 10.1007/s12034-020-02142-2
19 Yu Y, Zhang Q, Wu L, et al. Reaction mechanism of N-(4-hydroxyphenyl)ethanamide electrodegradation via phosphorus-graphene prepared from triphenylphosphine: Generation and destruction of the reactive species [J]. Chem. Eng. J., 2021, 403: 126322
doi: 10.1016/j.cej.2020.126322
20 Kong S, Hu W J, Li J S. Tribological properties of graphene in PAO base oil [J]. China Surf. Eng., 2019, 32(3): 162
孔 尚, 胡文敬, 李久盛. 石墨烯在PAO基础油中的摩擦学性能 [J]. 中国表面工程, 2019, 32(3): 162
21 Li Y, Xu Y, Wang S, et al. Preparation of graphene/polyaniline nanocomposite by in situ intercalation polymerization and their application in anti-corrosion coatings [J]. High Perform. Polym., 2019, 31(9-10): 1226
doi: 10.1177/0954008319839442
22 Pourhashem S, Vaezi M R, Rashidi A, et al. Distinctive roles of silane coupling agents on the corrosion inhibition performance of graphene oxide in epoxy coatings [J]. Prog. Org. Coat., 2017, 111: 47
23 Li Y F, Li J Y, Gao X H, et al. Synthesis of stabilized dispersion covalently-jointed SiO2@polyaniline with core-shell structure and anticorrosion performance of its hydrophobic coating for Mg-Li alloy [J]. Appl. Surf. Sci., 2018, 462(1): 362
doi: 10.1016/j.apsusc.2018.08.118
[1] LI Pengyu, LIU Zitong, KANG Shumei, CHEN Shanshan. Effect of Plasma Treatment on Performance of Polybutylene Adipate Coating on Biomedical AZ31 Mg-alloy[J]. 材料研究学报, 2023, 37(4): 271-280.
[2] LIAO Hongyu, JIA Yongxin, SU Ruiming, LI Guanglong, QU Yingdong, LI Rongde. Effect of Retrogression Times on Microstructure and Corrosion Resistance of 2024 Aluminum Alloy[J]. 材料研究学报, 2023, 37(4): 264-270.
[3] WANG Xingping, XUE Wenbin, WANG Wenxuan. High Temperature Steam Oxidation Behavior of Zr-2 Alloy with ZrO2/Cr Composite Coating[J]. 材料研究学报, 2023, 37(10): 759-769.
[4] CHEN Jie, LI Hongying, ZHOU Wenhao, ZHANG Qingxue, TANG Wei, LIU Dan. Effect of Heat Input on Low Temperature Toughness and Corrosion Resistance of Q1100 Steel Welded Joints[J]. 材料研究学报, 2022, 36(8): 617-627.
[5] GAO Wei, LIU Jiangnan, WEI Jingpeng, YAO Yuhong, YANG Wei. Structure and Properties of Cu2O Doped Micro Arc Oxidation Coating on TC4 Titanium Alloy[J]. 材料研究学报, 2022, 36(6): 409-415.
[6] YANG Liuyang, TAN Zhuowei, LI Tongyue, ZHANG Dalei, XING Shaohua, JU Hong. Dynamic Corrosion Behavior of Pipeline Defects Characterized by WBE and EIS Testing Techniques[J]. 材料研究学报, 2022, 36(5): 381-391.
[7] LI Rui, WANG Hao, ZHANG Tiangang, NIU Wei. Microstructure and Properties of Laser Clad Ti2Ni+TiC+Al2O3+CrxSy Composite Coating on Ti811 Alloy[J]. 材料研究学报, 2022, 36(1): 62-72.
[8] CHEN Yiwen, WANG Cheng, LOU Xia, LI Dingjun, ZHOU Ke, CHEN Minghui, WANG Qunchang, ZHU Shenglong, WANG Fuhui. Protective Performance of a Novel Inorganic Composite Coatings on CB2 Ferritic Heat Resistant Steel at 650℃ in Oxygen Flow with Water Vapor[J]. 材料研究学报, 2021, 35(9): 675-681.
[9] LI Lingmei, HUANG Huizhen, ZHANG Qinghuan, SHUAI Gewang. Effect of P on Properties of Sn-9Zn-0.1S Lead-Free Solder[J]. 材料研究学报, 2021, 35(8): 615-622.
[10] HAO Xinxin, XI Tong, ZHANG Hongzhen, YANG Chunguang, YANG Ke. Effect of Quenching Temperature on Microstructure and Properties of Cu-bearing 5Cr15MoV Martensitic Stainless Steel[J]. 材料研究学报, 2021, 35(12): 933-941.
[11] ZHANG Dalei, WEI Enze, JING He, YANG Liuyang, DOU Xiaohui, LI Tongyue. Construction of Super-hydrophobic Structure on Surface of Super Ferritic Stainless Steel B44660 and Its Corrosion Resistance[J]. 材料研究学报, 2021, 35(1): 7-16.
[12] WANG Guanyi, CHE Xin, ZHANG Haoyu, CHEN Lijia. Low-cycle Fatigue Behavior of Al-5.4Zn-2.6Mg-1.4Cu Alloy Sheet[J]. 材料研究学报, 2020, 34(9): 697-704.
[13] HUANG Anran, ZHANG Wei, WANG Xuelin, SHANG Chengjia, FAN Jiajie. Corrosion Behavior of Ferritic Stainless Steel in High Temperature Urea Environment[J]. 材料研究学报, 2020, 34(9): 712-720.
[14] GONG Weiwei, YANG Bingkun, CHEN Yun, HAO Wenkui, WANG Xiaofang, CHEN Hao. In Situ SECM Observation of Corrosion Behavior of Carbon Steel at Defects of Epoxy Coating under AC Current Conditions[J]. 材料研究学报, 2020, 34(7): 545-553.
[15] ZHU Jinyang, TAN Chengtong, BAO Feihu, XU Lining. CO2 Corrosion Behaviour of A Novel Al-containing Low Cr Steel in A Simulated Oilfield Formation Water[J]. 材料研究学报, 2020, 34(6): 443-451.
No Suggested Reading articles found!