|
|
Effect of Quenching Temperature on Microstructure and Properties of Cu-bearing 5Cr15MoV Martensitic Stainless Steel |
HAO Xinxin1,2, XI Tong2( ), ZHANG Hongzhen2, YANG Chunguang2, YANG Ke2 |
1.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China 2.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
|
Cite this article:
HAO Xinxin, XI Tong, ZHANG Hongzhen, YANG Chunguang, YANG Ke. Effect of Quenching Temperature on Microstructure and Properties of Cu-bearing 5Cr15MoV Martensitic Stainless Steel. Chinese Journal of Materials Research, 2021, 35(12): 933-941.
|
Abstract The Cu-bearing martensitic stainless steel 5Cr15MoV was heat treated at different temperatures for 30 min and then oil quenched. The effect of quenching temperature on the microstructure, hardness and corrosion resistance of the steel were investigated by means of optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), hardness tester and electrochemical test. The results show that the addition of Cu increases the volume fraction of residual austenite and decreases the hardness of the steel, the undissolved carbides in the quenched steel are Cr rich M23C6 type carbides with FCC structure, and the addition of Cu has no obvious effect on the size and morphology of the carbides in the 5Cr15MoV martensitic stainless steel, but its corrosion resistance is slightly reduced. With increase of the quenching temperature from 1000oC to 1100oC the undissolved carbides decrease, while the corrosion resistance of the steel increases. Meanwhile, the content of residual austenite also increases with the increase of quenching temperature. The combined action of carbide and residual austenite makes the hardness versus temperature curve of the quenched steel a parabolic shape with a maximum value at 1050°C.
|
Received: 02 April 2021
|
|
Fund: Peak Climbing Project of Foshan Hospital of Traditional Chinese Medicine(202000206);Science and Technology Plan of Shenyang(20-203-5-21);Youth Innovation Promotion Association CAS(2018221) |
About author: XI Tong, Tel: (024)23971899, E-mail: txi@imr.ac.cn
|
1 |
Hu K, Wu M Y, Li Y G. Research progress of martensitic stainless steel [J]. Foundry Technol., 2015, 36(10): 2394
|
|
胡 凯, 武明雨, 李运刚. 马氏体不锈钢的研究进展 [J]. 铸造技术, 2015, 36(10): 2394
|
2 |
Zhang E H, Zhang H L. Martensitic stainless steel development status and trends [J]. Coal Mine Machinery, 2014, 35(12): 16
|
|
张二红, 张华龙. 马氏体不锈钢发展现状与趋势 [J]. 煤矿机械, 2014, 35(12): 16
|
3 |
Chen J X. Crack failure analysis on kitchen knife of 5Cr15MoV steel [J]. Adv. Mater. Res., 2013, 834-836: 345
|
4 |
Yan H, He Z J, Lü N, et al. Effects of cooling rate on the precipitation behavior of grain boundary carbide and corrosion resistance of 5Cr15MoV stainless steel [J]. Mater. Corros., 2020, 71(8): 1257
|
5 |
Qin B. Effect of heat treatment on structure and properties of annealed cold rolled steet of martensitic stainless steel 5Cr15-MoV [J]. Spec. Steel, 2011, 32(02): 66
|
|
秦斌. 热处理对马氏体不锈钢5Cr15MoV冷轧退火板组织和性能的影响 [J]. 特殊钢, 2011, 32(02): 66
|
6 |
Zhang J Q, Wang Z B, Li X. Carbide precipitation in 5Cr15MoV martensitic stainless steel during hot working [J]. Heat Treat. Met., 2017, 42(02): 167
|
|
张剑桥, 王志斌, 李 筱. 5Cr15MoV马氏体不锈钢热加工过程碳化物析出 [J]. 金属热处理, 2017, 42(02): 167
|
7 |
Heidenau F, Mittelmeier W, Detsch R, et al. A novel antibacterial titania coating: metal ion toxicity and in vitro surface colonization [J]. J. Mater. Sci.: Mater. Med., 2005, 16(10): 883
|
8 |
Ren L, Nan L, Yang K. Study of copper precipitation behavior in a Cu-bearing austenitic antibacterial stainless steel [J]. Mater. Des., 2011, 32(4): 2374
|
9 |
Dan Z G, Ni H W, Xu B F, et al. Microstructure and antibacterial properties of AISI 420 stainless steel implanted by copper ions [J]. Thin Solid Films, 2005, 492(1): 93
|
10 |
Nan L, Cheng J, Yang K. Antibacterial behavior of a Cu-bearing Type 200 stainless steel [J]. J. Mater. Sci. Technol., 2012, 28(11): 1067
|
11 |
Ma D S, Chi H X, Zhou J, et al. Microstructure and mechanical properties of martensitic stainless steel 6Cr15MoV [J]. J. Iron Steel Res. Int., 2012, 19(3): 56
|
12 |
Qin B, Wang Z Y, Sun Q S. Effect of tempering temperature on properties of 00Cr16Ni5Mo stainless steel [J]. Mater. Charact., 2008, 59(8): 1096
|
13 |
Ji Y H, Xu W J, Liu W, et al. Microstructure and hardness of a novel Cu-bearing Cr17 martensitic stainless steel for knives and scissors [J]. Shanghai Jinshu, 2020, 42(06): 93
|
|
季勇华, 许万剑, 刘 威等. 一种新型刀剪用含铜Cr17马氏体不锈钢的组织和硬度 [J]. 上海金属, 2020, 42(06): 93
|
14 |
Yang Y D, Zhao H S, Liu T S, et al. Microstructure and properties of new high-carbon martensitic stainless steel [J]. J. Iron Steel Res., 2020, 32(02): 135
|
|
杨玉丹, 赵洪山, 刘腾轼等. 新型高碳马氏体不锈钢的组织与性能 [J]. 钢铁研究学报, 2020, 32(02): 135
|
15 |
Ma H, He Y, Lee K, et al. Effect of heat treatment on microstructural evolution of 13Cr martensitic stainless steel [J]. Key Eng. Mater., 2017, 727: 29
|
16 |
Tsuchiyama T, Tobata J, Tao T, et al. Quenching and partitioning treatment of a low-carbon martensitic stainless steel [J]. Mater. Sci. Eng. A, 2012, 532: 585
|
17 |
Barlow L, Du Toit M. Effect of austenitizing heat treatment on the microstructure and hardness of martensitic stainless steel AISI 420 [J]. J. Mater. Eng. Perform., 2012, 21: 1327
|
18 |
Zhu Q T, Li J, Shi C B, et al. Effect of quenching process on the microstructure and hardness of high-carbon martensitic stainless steel [J]. J. Mater. Eng. Perform., 2015, 24(11): 4313
|
19 |
Hutchinson B, Hagström J, Karlsson O, et al. Microstructures and hardness of as-quenched martensites (0.1~0.5%C) [J]. Acta Mater., 2011, 59(14): 5845
|
20 |
Yang Y D. Research on microstructure evolution of cutlery used high carbon martensitic stainless steel [D]. Shanghai: Shanghai University, 2020
|
|
杨玉丹. 刀具用高碳马氏体不锈钢的组织演变研究 [D]. 上海: 上海大学, 2020
|
21 |
Yao D. Evolution of the microstructure of high carbon martensitic stainless steel used as a cutlery material during manufacturing process [D]. Beijing: University of Science and Technology, 2016
|
|
姚 迪. 刀剪用高碳马氏体不锈钢生产过程组织演变行为研究 [D]. 北京: 北京科技大学, 2016
|
22 |
Krishna S C, Gangwar N K, Jha A K, et al. Effect of heat treatment on the microstructure and hardness of 17Cr-0.17N-0.43C-1.7Mo martensitic stainless steel [J]. J. Mater. Eng. Perform., 2015, 24(4): 1656
|
23 |
Bonagani S K, Bathula V, Kain V. Influence of tempering treatment on microstructure and pitting corrosion of 13 wt.% Cr martensitic stainless steel [J]. Corros. Sci., 2018, 131: 340
|
24 |
Lu S Y, Yao K F, Chen Y B, et al. The effect of tempering temperature on the microstructure and electrochemical properties of a 13% Cr-type martensitic stainless steel [J]. Electrochim. Acta, 2015, 165: 45
|
25 |
Ujiro T, Satoh S, Staehle R W, et al. Effect of alloying Cu on the corrosion resistance of stainless steels in chloride media [J]. Corros. Sci., 2001, 43(11): 2185
|
26 |
Ogura S, Sugimoto K, Sawada Y. Effects of Cu, Mo and C on the corrosion of deformed 18Cr8Ni stainless steels in H2SO4/NaCl solutions [J]. Corros. Sci., 1976, 16(5): 323
|
27 |
Seo M, Hultquist G, Leygraf C, et al. The influence of minor alloying elements (Nb, Ti and Cu) on the corrosion resistivity of ferritic stainless steel in sulfuric acid solution [J]. Corros. Sci., 1986, 26(11): 949
|
28 |
Ma T, Yang G Y, Deng M L, et al. Research status and prospect of copper-bearing steel [J]. Hot Work. Technol., 2017, 46(02): 36
|
|
马 涛, 杨桂宇, 邓美乐等. 含铜钢的研究现状及展望 [J]. 热加工工艺, 2017, 46(02): 36
|
29 |
Abo H, Noguchi S, Hayashi N, et al. Development of new pitting corrosion resistant austenitic stainless steel [J]. Corros. Eng., 1974, 23(6): 303
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|