Please wait a minute...
Chinese Journal of Materials Research  2021, Vol. 35 Issue (12): 933-941    DOI: 10.11901/1005.3093.2021.214
ARTICLES Current Issue | Archive | Adv Search |
Effect of Quenching Temperature on Microstructure and Properties of Cu-bearing 5Cr15MoV Martensitic Stainless Steel
HAO Xinxin1,2, XI Tong2(), ZHANG Hongzhen2, YANG Chunguang2, YANG Ke2
1.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
2.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

HAO Xinxin, XI Tong, ZHANG Hongzhen, YANG Chunguang, YANG Ke. Effect of Quenching Temperature on Microstructure and Properties of Cu-bearing 5Cr15MoV Martensitic Stainless Steel. Chinese Journal of Materials Research, 2021, 35(12): 933-941.

Download:  HTML  PDF(7583KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The Cu-bearing martensitic stainless steel 5Cr15MoV was heat treated at different temperatures for 30 min and then oil quenched. The effect of quenching temperature on the microstructure, hardness and corrosion resistance of the steel were investigated by means of optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), hardness tester and electrochemical test. The results show that the addition of Cu increases the volume fraction of residual austenite and decreases the hardness of the steel, the undissolved carbides in the quenched steel are Cr rich M23C6 type carbides with FCC structure, and the addition of Cu has no obvious effect on the size and morphology of the carbides in the 5Cr15MoV martensitic stainless steel, but its corrosion resistance is slightly reduced. With increase of the quenching temperature from 1000oC to 1100oC the undissolved carbides decrease, while the corrosion resistance of the steel increases. Meanwhile, the content of residual austenite also increases with the increase of quenching temperature. The combined action of carbide and residual austenite makes the hardness versus temperature curve of the quenched steel a parabolic shape with a maximum value at 1050°C.

Key words:  metallic materials      Cu-bearing 5Cr15MoV martensitic stainless steel      microstructure      hardness      corrosion resistance     
Received:  02 April 2021     
ZTFLH:  TG161  
Fund: Peak Climbing Project of Foshan Hospital of Traditional Chinese Medicine(202000206);Science and Technology Plan of Shenyang(20-203-5-21);Youth Innovation Promotion Association CAS(2018221)
About author:  XI Tong, Tel: (024)23971899, E-mail: txi@imr.ac.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.214     OR     https://www.cjmr.org/EN/Y2021/V35/I12/933

MaterialsCSiMnPSCrMoVCuFe
5Cr15MoV0.461.001.030.0080.00314.500.610.15-Bal.
5Cr15MoV-2.81Cu0.470.900.990.0080.00214.610.630.152.81Bal.
5Cr15MoV-4.13Cu0.431.250.910.0070.00216.040.650.174.13Bal.
Table 1  Chemical compositions (%, mass fraction) of the tested steels
Characteristic diffraction lineG
(200)γ/(200)α'2.423
(220)γ/(200)α'1.274
(311)γ/(200)α'1.446
(200)γ/(211)α'1.331
(220)γ/(211)α'0.6955
(311)γ/(211)α'0.7939
Table 2  G values used in the calculation of volume fraction of austenite
Fig.1  Optical microstructures of 5Cr15MoV-4.13Cu quenched at 1000℃ (a), 1025℃ (b), 1050℃ (c), 1075℃ (d), 1100℃ (e) and 5Cr15MoV quenched at 1050℃ (f)
Fig.2  XRD patterns of 5Cr15MoV (a), 5Cr15MoV-2.81Cu (b) and 5Cr15MoV-4.13Cu (c) after quenched at different temperatures, volume fraction of retained austenite as function of quenching temperature (d)
Fig.3  SEM images of 5Cr15MoV-4.13Cu quenched at 1000℃ (a), 1025℃ (b), 1050℃ (c), 1075℃ (d), 1100℃ (e) and 5Cr15MoV quenched at 1050℃ (f)
Fig.4  XRD pattern of extracted carbides from 5Cr15-MoV-4.13Cu quenched at 1050℃
Fig.5  TEM analysis of 5Cr15MoV after quenching at 1050℃ (a) bright-field image, (b~d) TEM-EDS images of carbides, (e) selected area diffraction (SAD) pattern of the carbide A1, (f) SAD pattern of the carbide A2 and (g) TEM-EDS of carbide A2
Fig.6  TEM analysis of 5Cr15MoV-4.13Cu after quenching at 1050℃ (a~b) bright-field image, (c) SAD pattern of the carbide A3
Fig.7  Hardness of tested steels at different quenching temperatures
Fig.8  Electrochemical polarization curves of 5Cr15-MoV at different quenching temperatures
Temperature/℃Ecorr/mVEp/mV
1000-152.8660.16
1025-132.0391.40
1050-119.35137.80
1075-113.47145.50
1100-105.77194.85
Table 3  Electrochemical parameters of 5Cr15MoV at different quenching temperatures
Fig.9  Electrochemical polarization curves of 5Cr15-MoV with different Cu content quenched at 1050℃
1 Hu K, Wu M Y, Li Y G. Research progress of martensitic stainless steel [J]. Foundry Technol., 2015, 36(10): 2394
胡 凯, 武明雨, 李运刚. 马氏体不锈钢的研究进展 [J]. 铸造技术, 2015, 36(10): 2394
2 Zhang E H, Zhang H L. Martensitic stainless steel development status and trends [J]. Coal Mine Machinery, 2014, 35(12): 16
张二红, 张华龙. 马氏体不锈钢发展现状与趋势 [J]. 煤矿机械, 2014, 35(12): 16
3 Chen J X. Crack failure analysis on kitchen knife of 5Cr15MoV steel [J]. Adv. Mater. Res., 2013, 834-836: 345
4 Yan H, He Z J, Lü N, et al. Effects of cooling rate on the precipitation behavior of grain boundary carbide and corrosion resistance of 5Cr15MoV stainless steel [J]. Mater. Corros., 2020, 71(8): 1257
5 Qin B. Effect of heat treatment on structure and properties of annealed cold rolled steet of martensitic stainless steel 5Cr15-MoV [J]. Spec. Steel, 2011, 32(02): 66
秦斌. 热处理对马氏体不锈钢5Cr15MoV冷轧退火板组织和性能的影响 [J]. 特殊钢, 2011, 32(02): 66
6 Zhang J Q, Wang Z B, Li X. Carbide precipitation in 5Cr15MoV martensitic stainless steel during hot working [J]. Heat Treat. Met., 2017, 42(02): 167
张剑桥, 王志斌, 李 筱. 5Cr15MoV马氏体不锈钢热加工过程碳化物析出 [J]. 金属热处理, 2017, 42(02): 167
7 Heidenau F, Mittelmeier W, Detsch R, et al. A novel antibacterial titania coating: metal ion toxicity and in vitro surface colonization [J]. J. Mater. Sci.: Mater. Med., 2005, 16(10): 883
8 Ren L, Nan L, Yang K. Study of copper precipitation behavior in a Cu-bearing austenitic antibacterial stainless steel [J]. Mater. Des., 2011, 32(4): 2374
9 Dan Z G, Ni H W, Xu B F, et al. Microstructure and antibacterial properties of AISI 420 stainless steel implanted by copper ions [J]. Thin Solid Films, 2005, 492(1): 93
10 Nan L, Cheng J, Yang K. Antibacterial behavior of a Cu-bearing Type 200 stainless steel [J]. J. Mater. Sci. Technol., 2012, 28(11): 1067
11 Ma D S, Chi H X, Zhou J, et al. Microstructure and mechanical properties of martensitic stainless steel 6Cr15MoV [J]. J. Iron Steel Res. Int., 2012, 19(3): 56
12 Qin B, Wang Z Y, Sun Q S. Effect of tempering temperature on properties of 00Cr16Ni5Mo stainless steel [J]. Mater. Charact., 2008, 59(8): 1096
13 Ji Y H, Xu W J, Liu W, et al. Microstructure and hardness of a novel Cu-bearing Cr17 martensitic stainless steel for knives and scissors [J]. Shanghai Jinshu, 2020, 42(06): 93
季勇华, 许万剑, 刘 威等. 一种新型刀剪用含铜Cr17马氏体不锈钢的组织和硬度 [J]. 上海金属, 2020, 42(06): 93
14 Yang Y D, Zhao H S, Liu T S, et al. Microstructure and properties of new high-carbon martensitic stainless steel [J]. J. Iron Steel Res., 2020, 32(02): 135
杨玉丹, 赵洪山, 刘腾轼等. 新型高碳马氏体不锈钢的组织与性能 [J]. 钢铁研究学报, 2020, 32(02): 135
15 Ma H, He Y, Lee K, et al. Effect of heat treatment on microstructural evolution of 13Cr martensitic stainless steel [J]. Key Eng. Mater., 2017, 727: 29
16 Tsuchiyama T, Tobata J, Tao T, et al. Quenching and partitioning treatment of a low-carbon martensitic stainless steel [J]. Mater. Sci. Eng. A, 2012, 532: 585
17 Barlow L, Du Toit M. Effect of austenitizing heat treatment on the microstructure and hardness of martensitic stainless steel AISI 420 [J]. J. Mater. Eng. Perform., 2012, 21: 1327
18 Zhu Q T, Li J, Shi C B, et al. Effect of quenching process on the microstructure and hardness of high-carbon martensitic stainless steel [J]. J. Mater. Eng. Perform., 2015, 24(11): 4313
19 Hutchinson B, Hagström J, Karlsson O, et al. Microstructures and hardness of as-quenched martensites (0.1~0.5%C) [J]. Acta Mater., 2011, 59(14): 5845
20 Yang Y D. Research on microstructure evolution of cutlery used high carbon martensitic stainless steel [D]. Shanghai: Shanghai University, 2020
杨玉丹. 刀具用高碳马氏体不锈钢的组织演变研究 [D]. 上海: 上海大学, 2020
21 Yao D. Evolution of the microstructure of high carbon martensitic stainless steel used as a cutlery material during manufacturing process [D]. Beijing: University of Science and Technology, 2016
姚 迪. 刀剪用高碳马氏体不锈钢生产过程组织演变行为研究 [D]. 北京: 北京科技大学, 2016
22 Krishna S C, Gangwar N K, Jha A K, et al. Effect of heat treatment on the microstructure and hardness of 17Cr-0.17N-0.43C-1.7Mo martensitic stainless steel [J]. J. Mater. Eng. Perform., 2015, 24(4): 1656
23 Bonagani S K, Bathula V, Kain V. Influence of tempering treatment on microstructure and pitting corrosion of 13 wt.% Cr martensitic stainless steel [J]. Corros. Sci., 2018, 131: 340
24 Lu S Y, Yao K F, Chen Y B, et al. The effect of tempering temperature on the microstructure and electrochemical properties of a 13% Cr-type martensitic stainless steel [J]. Electrochim. Acta, 2015, 165: 45
25 Ujiro T, Satoh S, Staehle R W, et al. Effect of alloying Cu on the corrosion resistance of stainless steels in chloride media [J]. Corros. Sci., 2001, 43(11): 2185
26 Ogura S, Sugimoto K, Sawada Y. Effects of Cu, Mo and C on the corrosion of deformed 18Cr8Ni stainless steels in H2SO4/NaCl solutions [J]. Corros. Sci., 1976, 16(5): 323
27 Seo M, Hultquist G, Leygraf C, et al. The influence of minor alloying elements (Nb, Ti and Cu) on the corrosion resistivity of ferritic stainless steel in sulfuric acid solution [J]. Corros. Sci., 1986, 26(11): 949
28 Ma T, Yang G Y, Deng M L, et al. Research status and prospect of copper-bearing steel [J]. Hot Work. Technol., 2017, 46(02): 36
马 涛, 杨桂宇, 邓美乐等. 含铜钢的研究现状及展望 [J]. 热加工工艺, 2017, 46(02): 36
29 Abo H, Noguchi S, Hayashi N, et al. Development of new pitting corrosion resistant austenitic stainless steel [J]. Corros. Eng., 1974, 23(6): 303
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!