Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (1): 62-72    DOI: 10.11901/1005.3093.2021.211
ARTICLES Current Issue | Archive | Adv Search |
Microstructure and Properties of Laser Clad Ti2Ni+TiC+Al2O3+CrxSy Composite Coating on Ti811 Alloy
LI Rui1(), WANG Hao1, ZHANG Tiangang2, NIU Wei3
1.Engineering Technology Training Center, Civil Aviation University of China, Tianjin 300300, China
2.College of Aeronautical Engineering, Civil Aviation University of China, Tianjin 300300, China
3.College of Mechanical Engineering, Tianjin Polytechnic University, Tianjin 300387, China
Cite this article: 

LI Rui, WANG Hao, ZHANG Tiangang, NIU Wei. Microstructure and Properties of Laser Clad Ti2Ni+TiC+Al2O3+CrxSy Composite Coating on Ti811 Alloy. Chinese Journal of Materials Research, 2022, 36(1): 62-72.

Download:  HTML  PDF(29119KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The composite coating of Ti2Ni+TiC+Al2O3+CrxSy was laser cladded on the surface of Ti811 alloy via coaxial powder feeding technology with mixed powders TC4+Ni45+Al2O3+MoS2+Y2O3 as cladding material. The microstructure, microhardness, friction and wear properties of the coating were characterized by means of SEM, EDS, XRD, microhardness tester and friction tester. The results show that the Ni and C of Ti811 alloy react with Ti respectively during laser cladding, so that the intermetallic compound Ti2Ni and hard reinforced phase TiC can form in situ, while the soft lubrication phase CrxSy also formed due to the sulfurization reaction between S and Cr after the decomposition of MoS2. The Ti2Ni-phase may present as network-like, TiC as spheroidal and dendritic, while Al2O3 as punctiform, which all uniformly distributed in the clad coating. The combined action of strengthening of the hard phase and lubrication of the soft phase makes the laser clad coating with higher microhardness and better wear resistance. When the laser power is 900W the average microhardness of the clad coating reaches 1303.5HV0.5 with the best wear resistance.

Key words:  surface and interface in the materials      laser cladding      composite coatings      titanium alloy      in-situ      tribological properties     
Received:  02 April 2021     
ZTFLH:  TB331  
Fund: Joint Funds of the National Natural Science Foundation of China(U1633104);Teaching and Research Program of Tianjin Science and Technology Commission(2019KJ119);Fundamental Research Funds for the Central Universities(3122017017)
About author:  LI Rui, Tel: 13821201303, E-mail: ruili@cauc.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.211     OR     https://www.cjmr.org/EN/Y2022/V36/I1/62

AlVMoCNFeOTi
8.10.991.050.030.010.050.06Bal.
Table 1  Main chemical composition of Ti811 alloy (mass fraction,%)
AlVFeCNOTi
5.5~6.83.5~4.50.300.100.050.20Bal.
Table 2  Main chemical composition of TC4 (mass fraction, %)
CrBSiFeCNi
8.91.84.03.00.35Bal.
Table 3  Main chemical composition of Ni45 (mass fraction,%)
Fig.1  Surface morphologies of laser cladding layers (a) N1, (b) N2, (c) N3, (d) crack distribution of N2 layer
Fig.2  Cross section macrograph of laser cladding coatings with different laser power (a) N1, (b) N2, (c) N3
Fig.3  X-ray diffraction patterns of laser cladding coatings with different laser power
Fig.4  Cross section microstructure of laser cladding coatings with different laser power (a) N1, (b) N2, (c) N3
Fig.5  Microstructure of laser cladding coating with different laser power N1: (a~c), N2: (d~f), N3: (g~i); magnified 1 K (a, d, g), magnified 4 K (b, e, h), magnified 10 K (c, f, i)
Fig.6  Element distribution in cladding coating of Sample N2. SEM micrograph (a), Ti (b), Ni (c), Al (d), V (e), Cr (f), O (g), C (h)
COAlSiTiVCrNi
A1Weight%17.344.465.421.941.998.91
Atom%45.115.0942.671.191.194.74
A2Weight%12.666.0556.11.992.3820.82
Atom%36.497.7640.541.361.5912.27
B1Weight%7.891.8355.222.293.2729.17
Atom%13.793.0854.352.122.9723.42
C1Weight%7.513.9385.240.280.472.58
Atom%23.975.5868.210.210.341.68
C2Weight%4.274.4988.382.86
Atom%14.726.8976.382.02
D1Weight%7.316.857.4360.9817.42
Atom%21.1314.869.5544.1710.29
Table 4  Energy spectrum analysis results of feature phase
Fig.7  Binary alloy phase diagram of Ti-C
Fig.8  Microhardness of laser cladding coating
Fig.9  Wear surface morphologies of Ti811 and coating with different laser power Ti811 substrate: (a), N1: (b), N2: (c), N3: (d)
Fig.10  Friction coefficients of Ti811 substrate and laser cladding coatings with different laser power
Fig.11  Wear rate and wear mass loss of the composite coating and substrate
1 Adebiyi D I, Popoola A P I. Mitigation of abrasive wear damage of Ti-6Al-4V by laser surface alloying [J]. Mater. Des., 2015, 74: 67
2 Ma N, Liu X L, Qiu Z W, et al. Effect of the ratio between tension and bending vibration loads on the fatigue behavior and failuremode of titanium alloy TA11 [J]. Adv Mat Res, 2014, 88: 27
3 Zhao Y Q, Lu B N. Effects of alloying compositions on the properties of Ti811 alloy [J]. Rare Metal Mat Eng., 1994, 23(3): 59
4 Dai J J, Zhu J Y, Chen C Z, et al. High temperature oxidation behavior and research status of modifications on improving high temperature oxidation resistance of titanium alloys and titanium aluminides: a review [J]. J. Alloys Compd., 2016, 685: 784
5 Liu Y N, Sun R L, Niu W, et al. Microstructure and friction and wear resistance of laser cladding composite coating on Ti811 surface [J]. Chin. J. Las., 2019, 46(1): 157
刘亚楠, 孙荣禄, 牛 伟等. Ti811表面激光熔覆复合涂层的微观组织及摩擦磨损性能 [J]. 中国激光, 2019, 46(1): 157
6 Zhang T G, Sun R L. Microstructure and properties of TC4 laser cladding coating on Ti811 titanium alloy surface [J]. Trans. China Weld. Inst., 2019, 40(4): 41
张天刚, 孙荣禄. Ti811合金表面TC4激光熔覆层组织及性能 [J]. 焊接学报, 2019, 40(4): 41
7 Zhang J C, Shi S H, Gong Y Q, et al. Research progress of laser cladding technology [J]. Surf. Coat. Technol., 2020, 49(10): 1
张津超, 石世宏, 龚燕琪等. 激光熔覆技术研究进展 [J]. 表面技术, 2020, 49(10): 1
8 Liu Y N, Yang L J, Yang X J, et al. Optimization of microstructure and properties of composite coating by laser cladding on titanium alloy [J]. Ceram. Int., 2021, 47(2): 2230
9 Zhang T G, Sun R L, Zhang XY, et al. Microstructure of In-situ synthesized Ti based TiC-TiB2 composite coating on surface of Ti811 alloy by laser cladding [J]. Mater Rev, 2018, 32(7): 2208
张天刚, 孙荣禄, 张雪洋等. Ti811表面激光熔覆原位合成TiC-TiB2复合Ti基涂层的显微组织分析 [J]. 材料导报A: 综述篇, 2018, 32(7): 2208
10 Zhang T G, Xiao H Q, Sun R L, et al. Microstructure and Friction Wear Properties of Ni-based Laser Cladding on Ti811 Surface [J]. Surf. Coat. Technol., 2019, 48(12): 182
张天刚, 肖海强, 孙荣禄等. Ti811表面Ni基激光熔覆层显微组织及摩擦磨损性能的研究 [J]. 表面技术, 2019, 48(12): 182
11 Li S, Dong F B, Diao L, tl ea. Microstructure and properties of laser clad Ni/Ti-Al2O3 coating [J]. Applied Laser, 2017, 37(3): 309
李 帅, 董丰波, 刁 磊等. 激光熔覆Ni/Ti-Al2O3涂层性能研究 [J]. 应用激光, 2017, 37(3): 309
12 Cai Y C, Luo Z, Feng M N, et al. The effect of TiC/Al2O3 composite ceramic reinforcement on tribological behavior of laser cladding Ni60 alloys coatings [J]. Surface and Coatings Technology, 2016, 291(15): 222
13 Sun R L, Niu W, Lei Y W, et al. Microstructure and tribological properties of laser clad NiCrBSi+Ni/MoS2 coating on TC4 titanium alloy [J]. T Mater Heat Treat., 2014, 35(6): 157
孙荣禄, 牛 伟, 雷贻文等. 钛合金TC4激光熔覆NiCrBSi+Ni/MoS2涂层组织和摩擦磨损性能 [J]. 材料热处理学报, 2014, 35(6): 157
14 Yu P C, Liu X B, Lu X L, et al. Research development of self-lubrication and wear-resistant coatings prepared by laser cladding [J]. Journal of Mater Prot, 2016, 49(1): 48
余鹏程, 刘秀波, 陆小龙等. 激光熔覆制备自润滑耐磨涂层的研究进展 [J]. 材料保护, 2016, 49(1): 48
15 Ouyang C S, Liu X B, Luo Y S, et al. High-temperature tribological properties of Ti3SiC2-Ni based self-lubricating composite coatings prepared on 304 stainless steel by laser cladding [J]. Surf. Coat. Technol., 2020, 49(8): 161
欧阳春生, 刘秀波, 罗迎社等. 304不锈钢表面激光熔覆制备Ti3SiC2-Ni基自润滑复合涂层的高温摩擦学性能 [J]. 表面技术, 2020, 49(8): 161
16 Beckmann N, Romero P A, Linsler D, et al. Origins of folding instabilities on polycrystalline metal surfaces [J]. Phys. Rev. Appl., 2014, 2(6): 064004
17 Zhang T G, Zhuang H F, Yao B, et al. Effect of Y2O3 on microstructure and properties of Ti-based laser cladding layer [J]. Acta Materiae Compositae Sninca., 2020, 37(6): 1390
张天刚, 庄怀风, 姚 波等. Y2O3对钛基激光熔覆层组织及性能的影响 [J]. 复合材料学报, 2020, 37(6): 1390
18 Li J N, Yu H J, Gong S L, et al. Influence of Al2O3-Y2O3 and Ce-Al-Ni amorphous alloy on physical properties of laser synthetic composite coatings on titanium alloys [J]. Surf. Coat. Technol., 2014, 247: 55
19 Zhao S J, Qi W J, Huang Y H, et al. Research on thermal cycle characteristics and microstructure performance of TC4 laser cladding NiCrCoAlY [J]. Trans. China Weld. Inst., 2020, 41(9): 89
赵盛举, 祁文军, 黄艳华等. TC4激光熔覆NiCrCoAlY热循环特性及组织性能 [J]. 焊接学报, 2020, 41(9): 89
20 Zhang Z Q, Yang F, Zhang H W, et al. Microstructure and wear resistance of TiCx reinforced Ti-based laser cladding coating with rare earth [J]. Chinese J Aeronaut, 2021, 42(7): 43
张志强, 杨凡, 张宏伟, 等. 含稀土TiCx增强钛基激光熔覆层组织与耐磨性 [J]. 航空学报, 2021, 42(7): 43
21 Zhang T G, Zhuang H F, Xiao H Q, et al. Effect of rare earth on microstructure and friction and wear properties of Ti-based laser cladding layer [J]. Chin. J. Las., 2019, 46(9): 128
张天刚, 庄怀风, 肖海强等. 稀土对Ti基激光熔覆层组织与摩擦磨损性能的影响 [J]. 中国激光, 2019, 46(9): 128
22 Goodarzi D M, Pekkarinen J, Salminen A. Analysis of laser cladding process parameter influence on the clad bead geometry [J]. Weld World, 2017, 61: 883
23 He X, Kong D J, Song R G. Influence of power on microstructure and properties of laser cladding Al-TiC-CeO2 composite coatings [J]. Rare Metal Mater. Eng., 2019, 48(11): 3634
贺 星, 孔德军, 宋仁国. 功率对激光熔覆Al-TiC-CeO2复合涂层组织与性能的影响 [J]. 稀有金属材料与工程, 2019, 48(11): 3634
24 Ihsan B. Thermochemical Data of Pure Substances (Volume 1 and 2) [M]. Beijing: Science Press, 2003
伊赫桑·巴伦. 纯物质热化学数据手册(上, 下卷) [M]. 北京: 科学出版社, 2003
25 Ma X G. Study on the morphology and growth mechanism of TiC synthesized via the Al melt reaction method [D]. Jinan: Shandong University, 2010
马晓光. 铝熔体反应合成TiC的微观形貌与生长机制研究 [D]. 济南: 山东大学, 2010
26 Zhao Y H, Sun J, Li J F. Effect of rare earth oxide on the properties of laser cladding layer and machining vibration suppressing in side milling [J]. Appl. Surf. Sci., 2014, 321(1): 387
27 Wang W J, Fu Z K, Cao X, et al. The role of lanthanum oxide on wear and contact fatigue damage resistance of laser cladding Fe-based alloy coating under oil lubrication condition [J]. Tribol Int, 2016, 94: 470
28 Zhang X F, Wang A H, Zhang X L, et al. Microstructure and tribological properties of laser claddingNi45-CaF2-WS2 self-lubrication coating [J]. Chin. J. Nonferrous, 2008, 18(2): 215
章小峰, 王爱华, 张祥林等. 激光熔覆Ni45-CaF2-WS2自润滑涂层组织与性能 [J]. 中国有色金属学报, 2008, 18(2): 215
29 Wang Z W, Zhuang S G, Liu H Q, et al. Research progress and development trend of self-lubricating composite coatings by laser cladding [J]. Surf. Coat. Technol., 2018, 47(5): 104
王志文, 庄宿国, 刘海青等. 激光熔覆自润滑复合涂层研究进展及发展趋势 [J]. 表面技术, 2018, 47(5): 104
30 Liu H Q, Liu X B, Meng X J, et al. Study on γ-NiCrAlTi/TiC+TiWC2/CrS+Ti2CS high-temperature self-lubrication wear resistant composite coating on Ti-6Al-4V by lase cladding [J]. Chin. J. Lasers, 2014, 41(3): 81
刘海青, 刘秀波, 孟祥军等. Ti-6Al-4V合金激光熔覆γ-NiCrAlTi/TiC+TiWC2/CrS+Ti2CS高温自润滑耐磨复合涂层研究 [J]. 中国激光, 2014, 41(3): 81
31 Wen S Z, Huang P. Principles of Tribology [M]. Beijing: Tsinghua University Press, 2002: 348
温诗铸, 黄 平. 摩擦学原理 [M]. 北京: 清华大学出版社, 2002: 348
32 Zhang P L, Liu X P, Lu Y L, et al. Microstructure and wear behavior of Cu-Mo-Si coatings by laser cladding [J]. Appl. Surf. Sci., 2014, 311(30): 709
33 Gao Q S, Yan H, Qin Y, et al. Self-lubricating wear resistant composite coating Ti-Ni+TiN+MoS2/TiS prepared on Ti-6Al-4V alloy by laser cladding [J]. Chin. J. Mater. Res., 2018, 32(12): 921
高秋实, 闫 华, 秦 阳等. 钛合金表面激光熔覆Ti-Ni+TiN+MoS2/TiS自润滑复合涂层 [J]. 材料研究学报, 2018, 32(12): 921
[1] WANG Qian, PU Lei, JIA Caixia, LI Zhixin, LI Jun. Inhomogeneity of Interface Modification of Carbon Fiber/Epoxy Composites[J]. 材料研究学报, 2023, 37(9): 668-674.
[2] LU Yimin, MA Lifang, WANG Hai, XI Lin, XU Manman, YANG Chunlai. Carbon-base Protective Coating Grown by Pulsed Laser Deposition on Copper Substrate[J]. 材料研究学报, 2023, 37(9): 706-712.
[3] FENG Ye, CHEN Zhiyong, JIANG Sumeng, GONG Jun, SHAN Yiyin, LIU Jianrong, WANG Qingjiang. Effect of a NiCrAlSiY Coating on Cyclic Oxidation and Room Temperature Tensile Properties of Ti65 Alloy Plate[J]. 材料研究学报, 2023, 37(7): 523-534.
[4] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[6] CHEN Zhipeng, ZHU Zhihao, SONG Mengfan, ZHANG Shuang, LIU Tianyu, DONG Chuang. An Ultra-high-strength Ti-Al-V-Mo-Nb-Zr Alloy Designed from Ti-6Al-4V Cluster Formula[J]. 材料研究学报, 2023, 37(4): 308-314.
[7] ZHANG Ruixue, MA Yingjie, JIA Yandi, HUANG Sensen, LEI Jiafeng, QIU Jianke, WANG Ping, YANG Rui. Microstructure Evolution and Element Partitioning Behavior during Heat-treatment in Metastable β Titanium Alloy[J]. 材料研究学报, 2023, 37(3): 161-167.
[8] TIAN Zhigang, LI Xinmei, QIN Zhong, WANG Xiaohui, LIU Weibin, HUNG Yong. Microstructure and Wear Resistance of CoCrFeNiTi x High Entropy Alloy Coating[J]. 材料研究学报, 2023, 37(3): 219-227.
[9] CHEN Kaiwang, ZHANG Penglin, LI Shuwang, NIU Xianming, HU Chunlian. High-temperature Tribological Properties for Plasma Spraying Coating of Ni-P Plated Mullite Powders[J]. 材料研究学报, 2023, 37(1): 39-46.
[10] WANG Wei, ZHOU Shanqi, GONG Penghui, ZHANG Haoze, SHI Yaming, WANG Kuaishe. Effect of Anneal Treatment on Microstructure, Texture and Mechanical Properties of TC4 Alloy Plates[J]. 材料研究学报, 2023, 37(1): 70-80.
[11] SHAN Weiyao, WANG Yongli, LI Jing, XIONG Liangyin, DU Xiaoming, LIU Shi. High Temperature Oxidation Resistance of Cr Based Coating on Zirconium Alloy[J]. 材料研究学报, 2022, 36(9): 699-705.
[12] CAI Yusheng, HAN Hongzhi, REN Dechun, JI Haibin, LEI Jiafeng. Effect of Chemical Etching Process on Surface Roughness of TC4 Ti-alloy Fabricated by Laser Selective Melting[J]. 材料研究学报, 2022, 36(6): 435-442.
[13] GAO Wei, LIU Jiangnan, WEI Jingpeng, YAO Yuhong, YANG Wei. Structure and Properties of Cu2O Doped Micro Arc Oxidation Coating on TC4 Titanium Alloy[J]. 材料研究学报, 2022, 36(6): 409-415.
[14] HU Haibo, ZHU Lihui, DUAN Yuanman, WU Xiaochun, GU Bingfu. In-situ Study of Microcrack Initiation and Propagation of M2 High Speed Steel[J]. 材料研究学报, 2022, 36(5): 365-372.
[15] LIU Siyu, LI Zhengyuan, CHEN Lijia, LI Feng. Mechanical Properties of In-situ Synthesised Nano Al2O3/Al-Zn-Cu Composites[J]. 材料研究学报, 2022, 36(4): 307-313.
No Suggested Reading articles found!