|
|
Effect of Mn Doping and Niobium Oxide Seed Layer on Electrical Properties of Potassium Sodium Niobate Thin Films |
ZHU Haiyong1,2( ), ZHANG Wei3 |
1.State Key Laboratory of Transducer Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China 2.Key Laboratory of Infrared Imaging Materials and Detectors, Chinese Academy of Sciences, Shanghai 200083, China 3.College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China |
|
Cite this article:
ZHU Haiyong, ZHANG Wei. Effect of Mn Doping and Niobium Oxide Seed Layer on Electrical Properties of Potassium Sodium Niobate Thin Films. Chinese Journal of Materials Research, 2022, 36(12): 945-950.
|
Abstract High-quality films of lead-free piezoelectric xMn-doped KNaNbO3 (x = 0, 0.05, 0.10) were successfully deposited onto Pt(111)/Ti/SiO2/Si(100) substrates by sol-gel method. The effect of Mn doping and seed layer of niobium oxide on the microstructure, dielectric properties, ferroelectric properties, and leakage current of the KNN films was investigated in detail. The results show that Mn doping can significantly improve the ferroelectric properties and reduce the leakage current of the prepared films. After inserted a seed layer of niobium oxide in between the films and the substrate, the leakage current related mechanism of KNN films changes from space charge conduction and ohmic conduction to ohmic conduction and Schottky emission, correspondingly, the leakage current is further reduced. It is found that when the electric field is 600 kV/cm, the maximum polarization value of the 10% mol Mn doped KNN films with a inserted seed layer is 20.33 μC/cm2, and the residual polarization value is 2.94 μC/cm2.
|
Received: 15 June 2021
|
|
1 |
Sherrill S A, Banerjee P, Rubloff G W, et al. High to ultra-high power electrical energy storage [J]. Phys. Chem. Chem. Phys., 2011, 13(46): 20714
doi: 10.1039/c1cp22659b
pmid: 21997843
|
2 |
Li Q, Chen L, Gadinski M R, et al. Flexible high-temperature dielectric materials from polymer nanocomposites [J]. Nature, 2015, 523: (7562) 576
|
3 |
Chu B J, Zhou X, Ren K L, et al. A dielectric polymer with high electric energy density and fast discharge speed [J]. Science, 2006, 313(5785): 334
pmid: 16857935
|
4 |
Prateek, Thakur V K, Gupta R K. Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects [J]. Chem. Rev., 2016, 116 (7): 4260
doi: 10.1021/acs.chemrev.5b00495
pmid: 27040315
|
5 |
Hao Y N, Wang X H, Bi K, et al. Significantly enhanced energy storage performance promoted by ultimate sized ferroelectric BaTiO3 fillers in nanocomposite films [J]. Nano Energy, 2017, 31: 49
doi: 10.1016/j.nanoen.2016.11.008
|
6 |
Dai Z H, Bao Y W, Zhang J J, et al. Photovoltaic properties of ITO/PZT-Ag2O/Pt ferroelectric diodes [J]. Chin. J. Mater. Res., 2013, 27: 544
|
|
代智华, 鲍育文, 张婧娇 等. ITO/PZT-Ag2O/Pt铁电薄膜的光伏特性 [J]. 材料研究学报, 2013, 27: 544
|
7 |
Chu R Q, Xu Z J, Li G R, et al. Synthesis of PZT (52/48) powders by wet-acoustic chemical method [J]. Chin. J. Mater. Res., 2008, 22: 307
|
|
初瑞清, 徐志军, 李国荣 等. 湿声化学法制备PZT(52/48)压电陶瓷粉体 [J]. 材料研究学报, 2008, 22: 307
|
8 |
Yang Z T, Gao F, Du H L, et al. Grain size engineered lead-free ceramics with both large energy storage density and ultrahigh mechanical properties [J]. Nano Energy, 2019, 58: 768
doi: 10.1016/j.nanoen.2019.02.003
|
9 |
Won S S, Kawahara M, Kuhn L, et al. BiFeO3-doped (K0.5, Na0.5)(Mn0.005, Nb0.995)O3 ferroelectric thin film capacitors for high energy density storage applications [J]. Appl. Phys. Lett., 2017, 110: 152901
doi: 10.1063/1.4980113
|
10 |
Zhao C, Meng X H, Wang W, et al. Energy storage performance of (K, Na)NbO3 ferroelectric thin films with Mn-Ta and Mn-Ti Co-doping [J]. Ceram. Int., 2019, 45: 13772
doi: 10.1016/j.ceramint.2019.04.073
|
11 |
Qu B Y, Du H L, Yang Z T, et al. Large recoverable energy storage density and low sintering temperature in potassium sodium niobate based ceramics for multilayer pulsed power capacitors [J]. J. Am. Ceram. Soc., 2017, 100: 1517
doi: 10.1111/jace.14728
|
12 |
Qu B Y, Du H L, Yang Z T, et al. Enhanced dielectric breakdown strength and energy storage density in lead-free relaxor ferroelectric ceramics prepared using transition liquid phase sintering [J]. RSC Adv., 2016, 6: 34381
doi: 10.1039/C6RA01919F
|
13 |
Qu B Y, Du H L, Yang Z T. Lead-free relaxor ferroelectric ceramics with high optical transparency and energy storage ability [J]. J. Mater. Chem., 2016, 4C: 1795
|
14 |
Shao T Q, Du H L, Ma H, et al. Potassium-sodium niobate based lead-free ceramics: novel electrical energy storage materials [J]. J. Mater. Chem., 2017, 5A: 554
|
15 |
Zhang X X, Liu J S, Zhu K J, et al. Effects of Mn doping on dielectric and ferroelectric characteristics of lead-free (K, Na, Li)NbO3 thin films grown by chemical solution deposition [J]. J. Mater. Sci. Mater. Electron., 2017, 28: 487
doi: 10.1007/s10854-016-5547-5
|
16 |
Zang G Z, Li L B, Yi X J, et al. Electrical properties of B site substituted (K0.48Na0.52)(W2/3Bi1/3) x Nb1- x O3 piezoceramics [J]. J. Mater. Sci. Mater. Electron., 2012, 23: 977
doi: 10.1007/s10854-011-0531-6
|
17 |
Fu F, Shen B, Zhai J W, et al. Influence of Mn2+ on the electrical properties of textured KNN thick films [J]. Ceram. Int., 2012, 38: S287
doi: 10.1016/j.ceramint.2011.04.103
|
18 |
Khorrami G H, Zak A K, Kompany A, et al. Optical and structural properties of X-doped (X=Mn, Mg, and Zn) PZT nanoparticles by Kramers-Kronig and size strain plot methods [J]. Ceram. Int., 2012, 38: 5683
doi: 10.1016/j.ceramint.2012.04.012
|
19 |
Wang Y G, Lau S P, Lee H W, et al. Comprehensive study of ZnO films prepared by filtered cathodic vacuum arc at room temperature [J]. J. Appl. Phys., 2003, 94: 1597
doi: 10.1063/1.1592007
|
20 |
Kupec A, Malic B, Tellier J, et al. Lead-free ferroelectric potassium sodium niobate thin films from solution: composition and structure [J]. J. Amer. Ceram. Soc., 2012, 95: 515
doi: 10.1111/j.1551-2916.2011.04892.x
|
21 |
Denis L M, Esteves G, Walker J, et al. Thickness dependent response of domain wall motion in declamped {001} Pb(Zr0.3Ti0.7)O3 thin films [J]. Acta Mater., 2018, 151: 243
doi: 10.1016/j.actamat.2018.03.046
|
22 |
Sun Y Z, Guo F, Lu Q S, et al. Improved ferroelectric photovoltaic effect in Mn-doped lead-free K0.5Na0.5NbO3 films [J]. Ceram. Int., 2018, 44: 13994
doi: 10.1016/j.ceramint.2018.04.250
|
23 |
Li N. Effects of interfacial seed layer and element doping on the electric properties of alkaline niobate based thin films [D]. Harbin: Harbin Institute of Technology, 2011
|
|
李 娜. 界面种子层及元素掺杂对铌酸钾钠基薄膜电性能的影响 [D]. 哈尔滨: 哈尔滨工业大学, 2011
|
24 |
Chen J Y, Bai Y L, Nie C H, et al. Strong magnetoelectric effect of Bi4Ti3O12/Bi5Ti3FeO15 composite films [J]. J. Alloys Compd., 2016, 663: 480
doi: 10.1016/j.jallcom.2015.12.088
|
25 |
Zhong Z Y, Ishiwara H. Variation of leakage current mechanisms by ion substitution in BiFeO3 thin films [J]. Appl. Phys. Lett., 2009, 95: 112902
doi: 10.1063/1.3231073
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|