Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (12): 945-950    DOI: 10.11901/1005.3093.2021.355
ARTICLES Current Issue | Archive | Adv Search |
Effect of Mn Doping and Niobium Oxide Seed Layer on Electrical Properties of Potassium Sodium Niobate Thin Films
ZHU Haiyong1,2(), ZHANG Wei3
1.State Key Laboratory of Transducer Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
2.Key Laboratory of Infrared Imaging Materials and Detectors, Chinese Academy of Sciences, Shanghai 200083, China
3.College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
Cite this article: 

ZHU Haiyong, ZHANG Wei. Effect of Mn Doping and Niobium Oxide Seed Layer on Electrical Properties of Potassium Sodium Niobate Thin Films. Chinese Journal of Materials Research, 2022, 36(12): 945-950.

Download:  HTML  PDF(2492KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

High-quality films of lead-free piezoelectric xMn-doped KNaNbO3 (x = 0, 0.05, 0.10) were successfully deposited onto Pt(111)/Ti/SiO2/Si(100) substrates by sol-gel method. The effect of Mn doping and seed layer of niobium oxide on the microstructure, dielectric properties, ferroelectric properties, and leakage current of the KNN films was investigated in detail. The results show that Mn doping can significantly improve the ferroelectric properties and reduce the leakage current of the prepared films. After inserted a seed layer of niobium oxide in between the films and the substrate, the leakage current related mechanism of KNN films changes from space charge conduction and ohmic conduction to ohmic conduction and Schottky emission, correspondingly, the leakage current is further reduced. It is found that when the electric field is 600 kV/cm, the maximum polarization value of the 10% mol Mn doped KNN films with a inserted seed layer is 20.33 μC/cm2, and the residual polarization value is 2.94 μC/cm2.

Key words:  inorganic non-metallic materials      energy storage performance      sol-gel      potassium sodium niobate films     
Received:  15 June 2021     
ZTFLH:  O484  

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.355     OR     https://www.cjmr.org/EN/Y2022/V36/I12/945

Fig.1  XRD spectra of KNN films
Fig.2  SEM images of the films (a) KNN films; (b) 5%Mn-KNN films; (c) NbO/5%Mn-KNN films; (d) KNN films section
Fig.3  Dielectric constant and loss tangent of KNN films
Fig.4  Hysteresis loop of KNN films (a), 5% Mn-KNN films (b), NbO/5% Mn-KNN films (c), 10% Mn-KNN films (d), NbO/10% Mn-KNN films (e) and Maximum polarization value and residual polarization value of the films in 200 kV/cm (f)
Fig.5  Leakage current density (J) as a function of the applied electric field (E) for the KNN films (a) and ln(J)-ln(E) characteristics of KNN,5%Mn-KNN,NbO/5%Mn-KNN films (b)
1 Sherrill S A, Banerjee P, Rubloff G W, et al. High to ultra-high power electrical energy storage [J]. Phys. Chem. Chem. Phys., 2011, 13(46): 20714
doi: 10.1039/c1cp22659b pmid: 21997843
2 Li Q, Chen L, Gadinski M R, et al. Flexible high-temperature dielectric materials from polymer nanocomposites [J]. Nature, 2015, 523: (7562) 576
3 Chu B J, Zhou X, Ren K L, et al. A dielectric polymer with high electric energy density and fast discharge speed [J]. Science, 2006, 313(5785): 334
pmid: 16857935
4 Prateek, Thakur V K, Gupta R K. Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects [J]. Chem. Rev., 2016, 116 (7): 4260
doi: 10.1021/acs.chemrev.5b00495 pmid: 27040315
5 Hao Y N, Wang X H, Bi K, et al. Significantly enhanced energy storage performance promoted by ultimate sized ferroelectric BaTiO3 fillers in nanocomposite films [J]. Nano Energy, 2017, 31: 49
doi: 10.1016/j.nanoen.2016.11.008
6 Dai Z H, Bao Y W, Zhang J J, et al. Photovoltaic properties of ITO/PZT-Ag2O/Pt ferroelectric diodes [J]. Chin. J. Mater. Res., 2013, 27: 544
代智华, 鲍育文, 张婧娇 等. ITO/PZT-Ag2O/Pt铁电薄膜的光伏特性 [J]. 材料研究学报, 2013, 27: 544
7 Chu R Q, Xu Z J, Li G R, et al. Synthesis of PZT (52/48) powders by wet-acoustic chemical method [J]. Chin. J. Mater. Res., 2008, 22: 307
初瑞清, 徐志军, 李国荣 等. 湿声化学法制备PZT(52/48)压电陶瓷粉体 [J]. 材料研究学报, 2008, 22: 307
8 Yang Z T, Gao F, Du H L, et al. Grain size engineered lead-free ceramics with both large energy storage density and ultrahigh mechanical properties [J]. Nano Energy, 2019, 58: 768
doi: 10.1016/j.nanoen.2019.02.003
9 Won S S, Kawahara M, Kuhn L, et al. BiFeO3-doped (K0.5, Na0.5)(Mn0.005, Nb0.995)O3 ferroelectric thin film capacitors for high energy density storage applications [J]. Appl. Phys. Lett., 2017, 110: 152901
doi: 10.1063/1.4980113
10 Zhao C, Meng X H, Wang W, et al. Energy storage performance of (K, Na)NbO3 ferroelectric thin films with Mn-Ta and Mn-Ti Co-doping [J]. Ceram. Int., 2019, 45: 13772
doi: 10.1016/j.ceramint.2019.04.073
11 Qu B Y, Du H L, Yang Z T, et al. Large recoverable energy storage density and low sintering temperature in potassium sodium niobate based ceramics for multilayer pulsed power capacitors [J]. J. Am. Ceram. Soc., 2017, 100: 1517
doi: 10.1111/jace.14728
12 Qu B Y, Du H L, Yang Z T, et al. Enhanced dielectric breakdown strength and energy storage density in lead-free relaxor ferroelectric ceramics prepared using transition liquid phase sintering [J]. RSC Adv., 2016, 6: 34381
doi: 10.1039/C6RA01919F
13 Qu B Y, Du H L, Yang Z T. Lead-free relaxor ferroelectric ceramics with high optical transparency and energy storage ability [J]. J. Mater. Chem., 2016, 4C: 1795
14 Shao T Q, Du H L, Ma H, et al. Potassium-sodium niobate based lead-free ceramics: novel electrical energy storage materials [J]. J. Mater. Chem., 2017, 5A: 554
15 Zhang X X, Liu J S, Zhu K J, et al. Effects of Mn doping on dielectric and ferroelectric characteristics of lead-free (K, Na, Li)NbO3 thin films grown by chemical solution deposition [J]. J. Mater. Sci. Mater. Electron., 2017, 28: 487
doi: 10.1007/s10854-016-5547-5
16 Zang G Z, Li L B, Yi X J, et al. Electrical properties of B site substituted (K0.48Na0.52)(W2/3Bi1/3) x Nb1- x O3 piezoceramics [J]. J. Mater. Sci. Mater. Electron., 2012, 23: 977
doi: 10.1007/s10854-011-0531-6
17 Fu F, Shen B, Zhai J W, et al. Influence of Mn2+ on the electrical properties of textured KNN thick films [J]. Ceram. Int., 2012, 38: S287
doi: 10.1016/j.ceramint.2011.04.103
18 Khorrami G H, Zak A K, Kompany A, et al. Optical and structural properties of X-doped (X=Mn, Mg, and Zn) PZT nanoparticles by Kramers-Kronig and size strain plot methods [J]. Ceram. Int., 2012, 38: 5683
doi: 10.1016/j.ceramint.2012.04.012
19 Wang Y G, Lau S P, Lee H W, et al. Comprehensive study of ZnO films prepared by filtered cathodic vacuum arc at room temperature [J]. J. Appl. Phys., 2003, 94: 1597
doi: 10.1063/1.1592007
20 Kupec A, Malic B, Tellier J, et al. Lead-free ferroelectric potassium sodium niobate thin films from solution: composition and structure [J]. J. Amer. Ceram. Soc., 2012, 95: 515
doi: 10.1111/j.1551-2916.2011.04892.x
21 Denis L M, Esteves G, Walker J, et al. Thickness dependent response of domain wall motion in declamped {001} Pb(Zr0.3Ti0.7)O3 thin films [J]. Acta Mater., 2018, 151: 243
doi: 10.1016/j.actamat.2018.03.046
22 Sun Y Z, Guo F, Lu Q S, et al. Improved ferroelectric photovoltaic effect in Mn-doped lead-free K0.5Na0.5NbO3 films [J]. Ceram. Int., 2018, 44: 13994
doi: 10.1016/j.ceramint.2018.04.250
23 Li N. Effects of interfacial seed layer and element doping on the electric properties of alkaline niobate based thin films [D]. Harbin: Harbin Institute of Technology, 2011
李 娜. 界面种子层及元素掺杂对铌酸钾钠基薄膜电性能的影响 [D]. 哈尔滨: 哈尔滨工业大学, 2011
24 Chen J Y, Bai Y L, Nie C H, et al. Strong magnetoelectric effect of Bi4Ti3O12/Bi5Ti3FeO15 composite films [J]. J. Alloys Compd., 2016, 663: 480
doi: 10.1016/j.jallcom.2015.12.088
25 Zhong Z Y, Ishiwara H. Variation of leakage current mechanisms by ion substitution in BiFeO3 thin films [J]. Appl. Phys. Lett., 2009, 95: 112902
doi: 10.1063/1.3231073
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[13] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[14] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
[15] MENG Xiangdong, ZHEN Chao, LIU Gang, CHENG Huiming. Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting[J]. 材料研究学报, 2022, 36(4): 241-249.
No Suggested Reading articles found!