|
|
Effect of Retrogression Times on Microstructure and Corrosion Resistance of 2024 Aluminum Alloy |
LIAO Hongyu, JIA Yongxin, SU Ruiming(), LI Guanglong, QU Yingdong, LI Rongde |
School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China |
|
Cite this article:
LIAO Hongyu, JIA Yongxin, SU Ruiming, LI Guanglong, QU Yingdong, LI Rongde. Effect of Retrogression Times on Microstructure and Corrosion Resistance of 2024 Aluminum Alloy. Chinese Journal of Materials Research, 2023, 37(4): 264-270.
|
Abstract Good corrosion resistance of 2024 Al-alloy without reducing mechanical properties can be obtained by retrogression and re-ageing (RRA) treatment. The effect of retrogression times of 0.1 h, 0.2 h, 0.3 h, 0.4 h and 0.5 h on the microstructure and corrosion resistance of 2024 Al-alloy treated by RRA were investigated by transmission electron microscopy, scanning electron microscopy, hardness tester, intergranular corrosion test and electrochemical corrosion test. The results show that the main precipitation strengthening phase of 2024 Al-alloy by RRA treatment is S phase. When the retrogression treatment time is 0.2 h, the S phase are small and uniformly distributed, and the properties of the alloy were also significantly improved. At this time, the hardness of the alloy is 147.2 HV0.5, the intergranular corrosion depth is 98.5 μm, the free-corrosion potential is -0.64 V, the free-corrosion current density is 0.24 μA·cm-2, and the resistance value is 31397 Ω·cm2. Therefore, the appropriate retrogression time is beneficial to improve the hardness and corrosion resistance of 2024 aluminum alloy with RRA treatment.
|
Received: 13 August 2021
|
|
Fund: National Key Research and Development Program of China(2017YFB1104000);Liaoning Natural Science Foundation(2021-MS-235) |
1 |
Fan C H, Ou L, Hu Z Y, et al. Re-dissolution and re-precipitation behavior of nano-precipitated phase in Al-Cu-Mg alloy subjected to rapid cold stamping[J]. T. Nonferr. Metal. Soc., 2019, 29(12):2455
doi: 10.1016/S1003-6326(19)65153-8
|
2 |
Wang H C, Yang H B, Liu G L, et al. Influence of Al-5Ti-0.25C refiner on microstructure and mechanical properties of 2024 alloy[J]. Mater. Rev., 2016, 30(20): 81
|
|
王海超, 杨化冰, 刘桂亮 等. Al-5Ti-0.25C细化剂对2024铝合金组织及力学性能的影响[J]. 材料导报, 2016, 30(20): 81
|
3 |
Zhang X M, Liu S D. Aerocraft aluminum alloys and their materials processing[J]. Materials China, 2013, 32(01): 39
|
|
张新明, 刘胜胆. 航空铝合金及其材料加工[J]. 中国材料进展, 2013, 32(01): 39
|
4 |
Li T, Tao J L, Wang Q Y. The mechanism of fatigue crack initiation of 2024-T3 and 2524-T34 aluminum alloys[J]. Chin. J. Mater. Res., 2011, 25(01): 67
|
|
李 棠, 陶俊林, 王清远. 2024-T3和2524-T34铝合金疲劳裂纹的萌生机制[J]. 材料研究学报, 2011, 25(01): 67
|
5 |
Shi W N, Zhou H F, Zhang X F. High-strength and anti-corrosion of Al-Cu-Mg alloy by controlled ageing process[J]. Phil. Mag. Lett., 2019, 99(07): 235
doi: 10.1080/09500839.2019.1662960
|
6 |
Qu F J, Xiao B L, Cao Y, et al. Effect of aging on corrosion resistance of 2024 aluminum alloy[J]. Nonferrous Metals Processing, 2020, 49(05): 53
|
|
曲凤娇, 肖宝靓, 曹阳 等. 时效处理对2024铝合金腐蚀性能的影响[J]. 有色金属加工, 2020, 49(05): 53
|
7 |
Sun L, Niu F J, Wu C L, et al. Influence of precipitation microstructure change on the stress corrosion behavior of AA2024 aluminum alloy[J]. Rare Metal Mat. Eng., 2019, 48(09): 2944
|
|
孙 丽, 牛凤姣, 伍翠兰 等. 时效析出行为的改变对AA2024铝合金应力腐蚀行为的影响[J]. 稀有金属材料与工程, 2019, 48(09): 2944
|
8 |
Barros A, Cruz C, Silva A P, et al. Length scale of solidification microstructure tailoring corrosion resistance and microhardness in T6 heat treatment of an Al-Cu-Mg alloy[J]. Corros. Eng. Sci. Techn., 2020, 55(06): 471
doi: 10.1080/1478422X.2020.1742410
|
9 |
Zuiko I, Kaibyshev R. Aging behavior of an Al-Cu-Mg alloy[J]. J. Alloy. Compd., 2018, 759: 108
doi: 10.1016/j.jallcom.2018.05.053
|
10 |
Li H, Zhou Y, Wang Z X. Effect of aging state and Cu content on intergranular corrosion sensitivity of Al-Cu alloy[J]. Hot Working Technology, 2020: 1
|
|
李 海, 周 洋, 王芝秀. 时效状态及Cu含量对Al-Cu合金晶间腐蚀敏感性的影响[J]. 热加工工艺, 2020: 1
|
11 |
Zhan X, Li H Z, Liang X P, et al. Effect of non-isothermal aging on intergranular corrosion and mechanical properties of 2A14 aluminum alloy[J]. Min. Metall. Eng., 2018, 38(06): 139
|
|
詹 鑫, 李慧中, 粱霄鹏 等. 非等温时效对2A14铝合金晶间腐蚀和力学性能的影响[J]. 矿冶工程, 2018, 38(06): 139
|
12 |
Reda Y, Abdel-Karim R, Elmahallawi I. Improvements in mechanical and stress corrosion cracking properties in Al-alloy 7075 via retrogression and reaging[J]. Mat. Sci. Eng. A-Struct., 2008, 485(01-02): 468
doi: 10.1016/j.msea.2007.08.025
|
13 |
Wu Y P, He Z Y, Zhou Z G, et al. Effect of non-isothermal retrogression and re-aging treatments on the microstructure and mechanical properties of 7050 alloy[J]. Mater. Rev., 2019, 33(S2): 394
|
|
吴懿萍, 何臻毅, 周志纲 等. 非等温回归再时效对7050铝合金组织与力学性能的影响[J]. 材料导报, 2019, 33(S2): 394
|
14 |
Su R M, Qu Y D, Li X, et al. Low-temperature retrogression of spray formed 7075 alloy[J]. Chin. J. Nonferrous. Met., 2016, 26(12):2523
doi: 10.1016/S1003-6326(16)64378-9
|
|
苏睿明, 曲迎东, 李想 等. 喷射态7075合金欠时效低温回归处理[J]. 中国有色金属学报, 2016, 26(12): 2523
|
15 |
Peng G S, Chen K H, Chen S Y, et al. Influence of dual retrogression and re-aging temper on microstructure, strength and exfoliation corrosion behavior of Al-Zn-Mg-Cu alloy[J]. T. Nonferr. Metal. Soc., 2012, 22(04): 803
doi: 10.1016/S1003-6326(11)61248-X
|
16 |
Gong J, Wang M P, Zhang Q, et al. Influence of retrogression and re-aging treatment on intergranular and exfoliation corrosion of 1973 aluminum alloy[J]. Journal of Central South University (Science and Technology), 2012, 43(07): 2520
|
|
龚 静, 汪明朴, 张 茜 等. RRA处理对1973铝合金晶间腐蚀与剥蚀的影响[J]. 中南大学学报(自然科学版), 2012, 43(07): 2520
|
17 |
Wang X, Liu C P, Lv H B, et al. Effect of retrogression reaging on microstructure and electrochemical corrosion resistance of 6082 aluminum alloy[J]. Special Casting & Nonferrous Alloys, 2019, 39(01): 84
|
|
王 鑫, 刘春鹏, 吕海波 等. 回归再时效对6082合金组织及电化学腐蚀性的影响[J]. 特种铸造及有色合金, 2019, 39(01): 84
|
18 |
Zhao G, Liu C M, Zhu L Y, et al. Retrogression and reaging treatments of 2014 alloy[J]. Journal of Materials and Metallurgy, 2003, (03): 210
|
|
赵 刚, 刘春明, 朱丽颖 等. 2014合金的回归再时效[J]. 材料与冶金学报, 2003, (03): 210
|
19 |
Yuan Z S, Lu Z, Xie Y H, et al. Effects of RRA treatments on microstructures and properties of a new high-strength aluminum-lithium alloy-2A97[J]. Chinese J. Aeronaut., 2007, 20(02): 187
doi: 10.1016/S1000-9361(07)60031-4
|
20 |
Ward N, Tran A, Abad A, et al. The effects of retrogression and reaging on aluminum alloy 2195[J]. J. Mater. Eng. Perform., 2011, 20(06): 1003
doi: 10.1007/s11665-010-9739-5
|
21 |
Ghosh K S, Tripati K. Microstructural characterization and electrochemical behavior of AA2014 Al-Cu-Mg-Si alloy of various tempers[J]. J. Mater. Eng. Perform., 2018, 27(11): 5926
doi: 10.1007/s11665-018-3694-y
|
22 |
Chen S Y, Chen K H, Peng G S, et al. Effect of heat treatment on strength, exfoliation corrosion and electrochemical behavior of 7085 aluminum alloy[J]. Mater. Design, 2012, 35: 93
doi: 10.1016/j.matdes.2011.09.033
|
23 |
Zhang J Q. Electrochemical Testing Technique[M]. Beijing: Chemical Industry Press, 2010
|
|
张鉴清. 电化学测试技术[M]. 北京: 化学工业出版社, 2010
|
24 |
Wen L, Wang Y M, Zhou Y, et al. Corrosion evaluation of microarc oxidation coatings formed on 2024 aluminium alloy[J]. Corros. Sci., 2010, 52 (08):2687
doi: 10.1016/j.corsci.2010.04.022
|
25 |
Wang S C, Starink M J. Two types of S phase precipitates in Al-Cu-Mg alloys[J]. Acta Mater., 2007, 55(03): 933
doi: 10.1016/j.actamat.2006.09.015
|
26 |
Wang S C, Starink M J. Precipitates and intermetallic phases in precipitation hardening Al-Cu-Mg-(Li) based alloys[J]. Acta Mater., 2005, 50(04):193
|
27 |
Parel T S, Wang S C, Starink M J. Hardening of an Al-Cu-Mg alloy containing types I and II S phase precipitates[J]. Mater. Design, 2010, 31:S2
doi: 10.1016/j.matdes.2009.12.048
|
28 |
Wang S C, Starink M J. The assessment of GPB2/S'' structures in Al-Cu-Mg alloys[J]. Mat. Sci. Eng. A-Struct., 2004, 386(1-2): 156
doi: 10.1016/S0921-5093(04)00913-X
|
29 |
Li H Z, Liu R M, Liang X P, et al. Effect of pre-deformation on microstructures and mechanical properties of high purity Al-Cu-Mg alloy[J]. T. Nonferr. Metal. Soc., 2016, 26 (06): 1482
doi: 10.1016/S1003-6326(16)64253-X
|
30 |
Marceau R K W, Sha G, Lumley R N, et al. Evolution of solute clustering in Al-Cu-Mg alloys during secondary ageing[J]. Acta Mater., 2010, 58: 1795
doi: 10.1016/j.actamat.2009.11.021
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|