Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (4): 264-270    DOI: 10.11901/1005.3093.2021.450
ARTICLES Current Issue | Archive | Adv Search |
Effect of Retrogression Times on Microstructure and Corrosion Resistance of 2024 Aluminum Alloy
LIAO Hongyu, JIA Yongxin, SU Ruiming(), LI Guanglong, QU Yingdong, LI Rongde
School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
Cite this article: 

LIAO Hongyu, JIA Yongxin, SU Ruiming, LI Guanglong, QU Yingdong, LI Rongde. Effect of Retrogression Times on Microstructure and Corrosion Resistance of 2024 Aluminum Alloy. Chinese Journal of Materials Research, 2023, 37(4): 264-270.

Download:  HTML  PDF(4343KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Good corrosion resistance of 2024 Al-alloy without reducing mechanical properties can be obtained by retrogression and re-ageing (RRA) treatment. The effect of retrogression times of 0.1 h, 0.2 h, 0.3 h, 0.4 h and 0.5 h on the microstructure and corrosion resistance of 2024 Al-alloy treated by RRA were investigated by transmission electron microscopy, scanning electron microscopy, hardness tester, intergranular corrosion test and electrochemical corrosion test. The results show that the main precipitation strengthening phase of 2024 Al-alloy by RRA treatment is S phase. When the retrogression treatment time is 0.2 h, the S phase are small and uniformly distributed, and the properties of the alloy were also significantly improved. At this time, the hardness of the alloy is 147.2 HV0.5, the intergranular corrosion depth is 98.5 μm, the free-corrosion potential is -0.64 V, the free-corrosion current density is 0.24 μA·cm-2, and the resistance value is 31397 Ω·cm2. Therefore, the appropriate retrogression time is beneficial to improve the hardness and corrosion resistance of 2024 aluminum alloy with RRA treatment.

Key words:  metallic materials      2024 aluminum alloy      retrogression and re-aging      corrosion resistance      precipitate     
Received:  13 August 2021     
ZTFLH:  TG146.2  
Fund: National Key Research and Development Program of China(2017YFB1104000);Liaoning Natural Science Foundation(2021-MS-235)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.450     OR     https://www.cjmr.org/EN/Y2023/V37/I4/264

CuMgMnFeSiAl
4.781.520.480.280.13Bal.
Table 1  Composition of 2024 aluminum alloy (%, mass fraction)
SamplePre-agingRetrogressionRe-aging
P190oC×2 h--
RRA1190oC×2 h320oC×0.1 h190oC×8 h
RRA2190oC×2 h320oC×0.2 h190oC×8 h
RRA3190oC×2 h320oC×0.3 h190oC×8 h
RRA4190oC×2 h320oC×0.4 h190oC×8 h
RRA5190oC×2 h320oC×0.5 h190oC×8 h
Table 2  Heat treatments of different sample
Fig.1  Hardness of the alloy with different heat treatments
Fig.2  IGC morphologies of the alloy with different heat treatments (a) P; (b) RRA1; (c) RRA2; (d) RRA3; (e) RRA4 and (f)RRA5
SamplePRRA1RRA2RRA3RRA4RRA5
IGC depth / μm228.2161.498.5139.9237.4252.6
Table 3  IGC depth of the alloy with different heat treatments
Fig.3  Polarization curves of the alloy with different heat treatments
SamplePRRA1RRA2RRA3RRA4RRA5
Self-corrosion potential / V-0.73-0.68-0.64-0.67-0.70-0.71
Self-corrosion current density / μA·cm-21.530.820.240.430.951.17
Table 4  The polarization curves parameters of the alloy with different heat treatments
Fig.4  Nyquist diagram of the alloy with different heat treatments
Fig.5  Equivalent circuit
SamplePRRA1RRA2RRA3RRA4RRA5
Rs / Ω·cm24.365.323.764.174.555.47
Cd / F·cm21.21×10-43.18×10-57.61×10-58.87×10-58.49×10-58.39×10-5
n0.870.870.890.890.880.89
Rt / Ω·cm265152785031397297042110417608
Table 5  EIS parameters of the alloy with different heat treatments
Fig.6  Light field TEM of the alloy with different heat treatments (a) P; (b) RRA1; (c) RRA2; (d) RRA3; (e) RRA4 and (f)RRA5
1 Fan C H, Ou L, Hu Z Y, et al. Re-dissolution and re-precipitation behavior of nano-precipitated phase in Al-Cu-Mg alloy subjected to rapid cold stamping[J]. T. Nonferr. Metal. Soc., 2019, 29(12):2455
doi: 10.1016/S1003-6326(19)65153-8
2 Wang H C, Yang H B, Liu G L, et al. Influence of Al-5Ti-0.25C refiner on microstructure and mechanical properties of 2024 alloy[J]. Mater. Rev., 2016, 30(20): 81
王海超, 杨化冰, 刘桂亮 等. Al-5Ti-0.25C细化剂对2024铝合金组织及力学性能的影响[J]. 材料导报, 2016, 30(20): 81
3 Zhang X M, Liu S D. Aerocraft aluminum alloys and their materials processing[J]. Materials China, 2013, 32(01): 39
张新明, 刘胜胆. 航空铝合金及其材料加工[J]. 中国材料进展, 2013, 32(01): 39
4 Li T, Tao J L, Wang Q Y. The mechanism of fatigue crack initiation of 2024-T3 and 2524-T34 aluminum alloys[J]. Chin. J. Mater. Res., 2011, 25(01): 67
李 棠, 陶俊林, 王清远. 2024-T3和2524-T34铝合金疲劳裂纹的萌生机制[J]. 材料研究学报, 2011, 25(01): 67
5 Shi W N, Zhou H F, Zhang X F. High-strength and anti-corrosion of Al-Cu-Mg alloy by controlled ageing process[J]. Phil. Mag. Lett., 2019, 99(07): 235
doi: 10.1080/09500839.2019.1662960
6 Qu F J, Xiao B L, Cao Y, et al. Effect of aging on corrosion resistance of 2024 aluminum alloy[J]. Nonferrous Metals Processing, 2020, 49(05): 53
曲凤娇, 肖宝靓, 曹阳 等. 时效处理对2024铝合金腐蚀性能的影响[J]. 有色金属加工, 2020, 49(05): 53
7 Sun L, Niu F J, Wu C L, et al. Influence of precipitation microstructure change on the stress corrosion behavior of AA2024 aluminum alloy[J]. Rare Metal Mat. Eng., 2019, 48(09): 2944
孙 丽, 牛凤姣, 伍翠兰 等. 时效析出行为的改变对AA2024铝合金应力腐蚀行为的影响[J]. 稀有金属材料与工程, 2019, 48(09): 2944
8 Barros A, Cruz C, Silva A P, et al. Length scale of solidification microstructure tailoring corrosion resistance and microhardness in T6 heat treatment of an Al-Cu-Mg alloy[J]. Corros. Eng. Sci. Techn., 2020, 55(06): 471
doi: 10.1080/1478422X.2020.1742410
9 Zuiko I, Kaibyshev R. Aging behavior of an Al-Cu-Mg alloy[J]. J. Alloy. Compd., 2018, 759: 108
doi: 10.1016/j.jallcom.2018.05.053
10 Li H, Zhou Y, Wang Z X. Effect of aging state and Cu content on intergranular corrosion sensitivity of Al-Cu alloy[J]. Hot Working Technology, 2020: 1
李 海, 周 洋, 王芝秀. 时效状态及Cu含量对Al-Cu合金晶间腐蚀敏感性的影响[J]. 热加工工艺, 2020: 1
11 Zhan X, Li H Z, Liang X P, et al. Effect of non-isothermal aging on intergranular corrosion and mechanical properties of 2A14 aluminum alloy[J]. Min. Metall. Eng., 2018, 38(06): 139
詹 鑫, 李慧中, 粱霄鹏 等. 非等温时效对2A14铝合金晶间腐蚀和力学性能的影响[J]. 矿冶工程, 2018, 38(06): 139
12 Reda Y, Abdel-Karim R, Elmahallawi I. Improvements in mechanical and stress corrosion cracking properties in Al-alloy 7075 via retrogression and reaging[J]. Mat. Sci. Eng. A-Struct., 2008, 485(01-02): 468
doi: 10.1016/j.msea.2007.08.025
13 Wu Y P, He Z Y, Zhou Z G, et al. Effect of non-isothermal retrogression and re-aging treatments on the microstructure and mechanical properties of 7050 alloy[J]. Mater. Rev., 2019, 33(S2): 394
吴懿萍, 何臻毅, 周志纲 等. 非等温回归再时效对7050铝合金组织与力学性能的影响[J]. 材料导报, 2019, 33(S2): 394
14 Su R M, Qu Y D, Li X, et al. Low-temperature retrogression of spray formed 7075 alloy[J]. Chin. J. Nonferrous. Met., 2016, 26(12):2523
doi: 10.1016/S1003-6326(16)64378-9
苏睿明, 曲迎东, 李想 等. 喷射态7075合金欠时效低温回归处理[J]. 中国有色金属学报, 2016, 26(12): 2523
15 Peng G S, Chen K H, Chen S Y, et al. Influence of dual retrogression and re-aging temper on microstructure, strength and exfoliation corrosion behavior of Al-Zn-Mg-Cu alloy[J]. T. Nonferr. Metal. Soc., 2012, 22(04): 803
doi: 10.1016/S1003-6326(11)61248-X
16 Gong J, Wang M P, Zhang Q, et al. Influence of retrogression and re-aging treatment on intergranular and exfoliation corrosion of 1973 aluminum alloy[J]. Journal of Central South University (Science and Technology), 2012, 43(07): 2520
龚 静, 汪明朴, 张 茜 等. RRA处理对1973铝合金晶间腐蚀与剥蚀的影响[J]. 中南大学学报(自然科学版), 2012, 43(07): 2520
17 Wang X, Liu C P, Lv H B, et al. Effect of retrogression reaging on microstructure and electrochemical corrosion resistance of 6082 aluminum alloy[J]. Special Casting & Nonferrous Alloys, 2019, 39(01): 84
王 鑫, 刘春鹏, 吕海波 等. 回归再时效对6082合金组织及电化学腐蚀性的影响[J]. 特种铸造及有色合金, 2019, 39(01): 84
18 Zhao G, Liu C M, Zhu L Y, et al. Retrogression and reaging treatments of 2014 alloy[J]. Journal of Materials and Metallurgy, 2003, (03): 210
赵 刚, 刘春明, 朱丽颖 等. 2014合金的回归再时效[J]. 材料与冶金学报, 2003, (03): 210
19 Yuan Z S, Lu Z, Xie Y H, et al. Effects of RRA treatments on microstructures and properties of a new high-strength aluminum-lithium alloy-2A97[J]. Chinese J. Aeronaut., 2007, 20(02): 187
doi: 10.1016/S1000-9361(07)60031-4
20 Ward N, Tran A, Abad A, et al. The effects of retrogression and reaging on aluminum alloy 2195[J]. J. Mater. Eng. Perform., 2011, 20(06): 1003
doi: 10.1007/s11665-010-9739-5
21 Ghosh K S, Tripati K. Microstructural characterization and electrochemical behavior of AA2014 Al-Cu-Mg-Si alloy of various tempers[J]. J. Mater. Eng. Perform., 2018, 27(11): 5926
doi: 10.1007/s11665-018-3694-y
22 Chen S Y, Chen K H, Peng G S, et al. Effect of heat treatment on strength, exfoliation corrosion and electrochemical behavior of 7085 aluminum alloy[J]. Mater. Design, 2012, 35: 93
doi: 10.1016/j.matdes.2011.09.033
23 Zhang J Q. Electrochemical Testing Technique[M]. Beijing: Chemical Industry Press, 2010
张鉴清. 电化学测试技术[M]. 北京: 化学工业出版社, 2010
24 Wen L, Wang Y M, Zhou Y, et al. Corrosion evaluation of microarc oxidation coatings formed on 2024 aluminium alloy[J]. Corros. Sci., 2010, 52 (08):2687
doi: 10.1016/j.corsci.2010.04.022
25 Wang S C, Starink M J. Two types of S phase precipitates in Al-Cu-Mg alloys[J]. Acta Mater., 2007, 55(03): 933
doi: 10.1016/j.actamat.2006.09.015
26 Wang S C, Starink M J. Precipitates and intermetallic phases in precipitation hardening Al-Cu-Mg-(Li) based alloys[J]. Acta Mater., 2005, 50(04):193
27 Parel T S, Wang S C, Starink M J. Hardening of an Al-Cu-Mg alloy containing types I and II S phase precipitates[J]. Mater. Design, 2010, 31:S2
doi: 10.1016/j.matdes.2009.12.048
28 Wang S C, Starink M J. The assessment of GPB2/S'' structures in Al-Cu-Mg alloys[J]. Mat. Sci. Eng. A-Struct., 2004, 386(1-2): 156
doi: 10.1016/S0921-5093(04)00913-X
29 Li H Z, Liu R M, Liang X P, et al. Effect of pre-deformation on microstructures and mechanical properties of high purity Al-Cu-Mg alloy[J]. T. Nonferr. Metal. Soc., 2016, 26 (06): 1482
doi: 10.1016/S1003-6326(16)64253-X
30 Marceau R K W, Sha G, Lumley R N, et al. Evolution of solute clustering in Al-Cu-Mg alloys during secondary ageing[J]. Acta Mater., 2010, 58: 1795
doi: 10.1016/j.actamat.2009.11.021
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!