|
|
Effect of Plasma Treatment on Performance of Polybutylene Adipate Coating on Biomedical AZ31 Mg-alloy |
LI Pengyu1,2, LIU Zitong2,3, KANG Shumei1( ), CHEN Shanshan2( ) |
1.School of Materials and Metallurgy, University of Science and Technology Liaoning, Anshan 114051, China 2.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 3.School of Materials Science and Engineering, Shenyang Ligong University, Shenyang 110159, China |
|
Cite this article:
LI Pengyu, LIU Zitong, KANG Shumei, CHEN Shanshan. Effect of Plasma Treatment on Performance of Polybutylene Adipate Coating on Biomedical AZ31 Mg-alloy. Chinese Journal of Materials Research, 2023, 37(4): 271-280.
|
Abstract Polybutylene adipate (PBA) protective coating was prepared on fluorinated AZ31 Mg-alloy by uniform speed lifting method and then the coated Mg-alloys were subjected to plasma treatment with different power and time. The effect of plasma treatment on the surface morphology, phase composition and surface wettability of PBA protective coating were characterized by means of scanning electron microscope (SEM), X-ray photoelectron spectroscope (XPS), Fourier transform infrared spectroscope (FT-IR) and contact angle measuring instrument. The corrosion resistance of the coated Mg-alloy was characterized by potentiodynamic polarization curve measurement and electrochemical impedance spectroscope (EIS). The biological activity of the protective coatings was verified by comparing the cells adhesion on the coating surface before and after plasma treatment. Results show that plasma treatment could increase the surface roughness of PBA protective coating, increase the oxygen atom proportion, and thereby enhance the wettability of the coating surface obviously. However, plasma treatment reduced the corrosion resistance of the PBA coated Mg-alloy to a certain extent, but its corrosion current density was 2~3 orders of magnitude lower than that of the AZ31 Mg-alloy without protective coating and the fluorinated ones. In sum, the PBA protective coating can provide effective protection for Mg-alloy substrate, and the EIS curve also showed the same results. Besides, Cell adhesion on the surface of plasma treated samples increased significantly.
|
Received: 11 May 2022
|
|
Fund: National Natural Science Foundation of China(51901227);National Natural Science Foundation of China(81873918);Youth Innovation Promotion Association, Chinese Academy of Sciences(2019194) |
1 |
Zhou J, Ding Y. Thinking on the comparation of therapies on coronary heart disease[J]. Med. Philos. (Clin. Decis. Making Forum Ed.), 2006, 27(4): 36
|
|
周 江, 丁 彦. 冠心病治疗方法的比较思考[J]. 医学与哲学(临床决策论坛版), 2006, 27(4): 36
|
2 |
Guo Y Y, Yu Z W, Zhang J. Research hotspots of magnesium alloy biomaterials in an in vivo animal[J]. Chin. J. Tissue Eng. Res., 2022, 26(22): 3556
|
|
郭洋妍, 喻正文, 张 剑. 镁合金生物材料动物体内实验的研究热点[J]. 中国组织工程研究, 2022, 26(22): 3556
|
3 |
DeCarlo C, Boitano L, Latz C, et al. Patients with failed femoropopliteal covered stents are more likely to present with acute limb ischemia than those with failed femoropopliteal bare-metal stents[J]. J. Vasc. Surg., 2020, 72(5): e363
|
4 |
Wang Y Y, Wu H M, Zhen W Q, et al. Research progress of biodegradable vascular stent[J]. Chin. J. Med. Instrument., 2021, 45(4): 410
|
|
王洋洋, 吴红枚, 甄文强 等. 生物可降解血管支架研究进展[J]. 中国医疗器械杂志, 2021, 45(4): 410
|
5 |
Ishizaki T, Masuda Y, Teshima K. Composite film formed on magnesium alloy AZ31 by chemical conversion from molybdate/phosphate/fluorinate aqueous solution toward corrosion protection[J]. Surf. Coat. Technol., 2013, 217: 76
doi: 10.1016/j.surfcoat.2012.11.076
|
6 |
Zhang X P, Chen G. Immersion and electrochemical tests study on corrosion resistance of chrome-free chemical conversion film on AZ91D Mg alloy in 5 wt% NaCl solution[J]. Surf. Rev. Lett., 2005, 12(3): 417
doi: 10.1142/S0218625X05007244
|
7 |
Zain M Z M, Illias S, Mat Salleh M, et al. Improvement of corrosion resistance of rare earth element (REE)-based anodic oxidation coating on AZ91D magnesium alloy[J]. Appl. Mech. Mater., 2012, 187: 210
doi: 10.4028/www.scientific.net/AMM.187
|
8 |
Jiang X Z, Lu S, Tang L, et al. Influence of negative voltage on micro-arc oxidation of magnesium alloy under two steps voltage-increasing mode[J]. Key Eng. Mater., 2013, 575-576: 472
doi: 10.4028/www.scientific.net/KEM.575-576
|
9 |
Guo Q K, Lü Z Q, Zhang Y, et al. In vivo degradation behavior and histocompatibility of a novel fully biodegradable material: Poly trimethylene carbonate-Co-D, L-Lactide[J]. J. Clin. Rehab. Tissue Eng. Res., 2011, 15(34): 6368
|
|
郭清奎, 吕志前, 张 袆 等. 新型可完全降解材料聚外消旋乳酸-三亚甲基碳酸酯聚合物体内降解行为和组织相容性[J]. 中国组织工程研究与临床康复, 2011, 15(34): 6368
|
10 |
Lu R P, Zou Z C, Zhao F N, et al. Role and application of polylactic acid-hydroxyacetic acid copolymer scaffolds in bone defect repair and regeneration[J]. Chin. J. Tissue Eng. Res., 2022, 26(28): 4525
|
|
卢仁培, 邹志晨, 赵丰年 等. 聚乳酸-羟基乙酸共聚物复合支架在骨缺损修复再生中的作用与应用[J]. 中国组织工程研究, 2022, 26(28): 4525
|
11 |
Liu J, Zhai H Y, Sun Y N, et al. Developing high strength poly (L-lactic acid) nanofiber yarns for biomedical textile materials: A comparative study of novel nanofiber yarns and traditional microfiber yarns[J]. Mater. Lett., 2021, 300: 130229
doi: 10.1016/j.matlet.2021.130229
|
12 |
Yao F L, Liu C, Meng J H, et al. Poly(lactic acid)s with a controlled degradability[J]. Polym. Bull., 2003, (3): 47
|
|
姚芳莲, 刘 畅, 孟继红 等. 降解可控乳酸类聚合物[J]. 高分子通报, 2003, (3): 47
|
13 |
Turalija M, Bischof S, Budimir A, et al. Antimicrobial PLA films from environment friendly additives[J]. Composites, 2016, 102B: 94
|
14 |
Sui S Y, Ni G H, Xie H B, et al. Surface modification of polymethyl methacrylate by capacitive-coupled plasmas[J]. Chin. J. Vac. Sci. Technol., 2019, 39(8): 617
|
|
隋思源, 倪国华, 谢洪兵 等. 不同气氛低气压电容耦合放电等离子体对聚甲基丙烯酸甲酯表面的改性[J]. 真空科学与技术学报, 2019, 39(8): 617
|
15 |
Wang X P, Li W M, Wu Q Q, et al. Influence of plasma treatment on the surface property of polypropylene mesh for hernia repair[J]. J. Biomed. Eng. Res., 2020, 39(2): 167
|
|
王宪朋, 李文明, 吴倩倩 等. 等离子体处理技术对疝修补用聚丙烯网表面性能的影响[J]. 生物医学工程研究, 2020, 39(2): 167
|
16 |
Jiang N, Zhao L F, Gan Z H. Influence of nucleating agent on the formation and enzymatic degradation of poly(butylene adipate) polymorphic crystals[J]. Polym. Degrad. Stab., 2010, 95(6): 1045
doi: 10.1016/j.polymdegradstab.2010.03.004
|
17 |
Liu Y, Yin X M, Zhang J J, et al. A electro-deposition process for fabrication of biomimetic super-hydrophobic surface and its corrosion resistance on magnesium alloy[J]. Electrochim. Acta, 2014, 125: 395
doi: 10.1016/j.electacta.2014.01.135
|
18 |
Walter R, Kannan M B. In-vitro degradation behaviour of WE54 magnesium alloy in simulated body fluid[J]. Mater. Lett., 2011, 65(4): 748
doi: 10.1016/j.matlet.2010.11.051
|
19 |
Jayaraj J, Amruth Raj S, Srinivasan A, et al. Composite magnesium phosphate coatings for improved corrosion resistance of magnesium AZ31 alloy[J]. Corros. Sci., 2016, 113: 104
doi: 10.1016/j.corsci.2016.10.010
|
20 |
Li C Q, Xu D K, Chen X B, et al. Composition and microstructure dependent corrosion behaviour of Mg-Li alloys[J]. Electrochim. Acta, 2018, 260: 55
doi: 10.1016/j.electacta.2017.11.091
|
21 |
Gao F. Surface modification to modulate electrochemical corrosion behavior and biocompatibility of magnesium alloys biocompatibility[D]. Huaian: Huaiyin Institute of Technology, 2020
|
|
高 凡. 表面改性调控镁合金电化学腐蚀行为及生物相容性的研究[D]. 淮安: 淮阴工学院, 2020
|
22 |
Yu Y Q, Ding T T, Xue Y, et al. Osteoinduction and long-term osseointegration promoted by combined effects of nitrogen and manganese elements in high nitrogen nickel-free stainless steel[J]. J. Mater. Chem., 2016, 4B(4) : 801
|
23 |
Hong L, Liang X, Wei W, et al. Preparation and properties of biodegradable coating on magnesium alloy[J]. Surf. Technol., 2020, 49(11): 151
|
|
洪 柳, 梁 雪, 魏 玮 等. 镁合金表面可降解涂层的制备及其性能[J]. 表面技术, 2020, 49(11): 151-160.
|
24 |
Yi S, Yin G F, Zheng C Q. Relationship between surface interfacial properties of biomaterials and their hemocompatibility[J]. Chin. J. Oral Implantol., 2003, 8(2): 83
|
|
易 树, 尹光福, 郑昌琼. 生物材料表面界面特性与其血液相容性的关系[J]. 中国口腔种植学杂志, 2003, 8(2): 83
|
25 |
Jaleh B, Parvin P, Wanichapichart P, et al. Induced super hydrophilicity due to surface modification of polypropylene membrane treated by O2 plasma[J]. Appl. Surf. Sci., 2010, 257(5): 1655
doi: 10.1016/j.apsusc.2010.08.117
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|