|
|
Low-cycle Fatigue Behavior of Al-5.4Zn-2.6Mg-1.4Cu Alloy Sheet |
WANG Guanyi, CHE Xin( ), ZHANG Haoyu, CHEN Lijia |
School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China |
|
Cite this article:
WANG Guanyi, CHE Xin, ZHANG Haoyu, CHEN Lijia. Low-cycle Fatigue Behavior of Al-5.4Zn-2.6Mg-1.4Cu Alloy Sheet. Chinese Journal of Materials Research, 2020, 34(9): 697-704.
|
Abstract Low-cycle fatigue behavior for two type of specimens, sampling along rolling direction (RD) and transvers direction (TD) respectively of the rolled sheet of Al-5.4Zn-2.6Mg-1.4Cu alloy was comparatively assessed at room temperature. The results show that for all imposed total strain amplitudes the alloy along both RD and TD directions exhibits the stable cyclic stress response behavior. The cyclic stress amplitude of the alloy along TD direction is higher than that along RD direction for the same total strain amplitude, while the fatigue life of the alloy along RD direction is significantly longer than that along TD direction. For the Al-5.4Zn-2.6Mg-1.4Cu alloy sheet, the plastic strain amplitude and elastic strain amplitude are linearly related to the number of reversals to failure. In addition, under the loading condition of low-cycle fatigue the fatigue cracks initiate transgranularly at the free surface of fatigue samples and propagate transgranularly.
|
Received: 15 January 2020
|
|
Fund: Foundation of State Key Laboratory of Rolling and Automation, Northeastern University(2018RALKFKT010) |
[1] |
Li C B, Deng Y L, Tang J G, et al. Effect of quenching rate on properties of automotive high strength Al-alloy [J]. Chin. J. Mater. Res., 2019, 33: 103
doi: 10.11901/1005.3093.2018.391
|
|
(李承波, 邓运来, 唐建国等. 淬火速率对汽车用高强铝合金性能的影响 [J]. 材料研究学报, 2019, 33: 103)
doi: 10.11901/1005.3093.2018.391
|
[2] |
Wang Y B, Huang N, Liu L S, et al. Preparation and cutting performance of diamond coated hard alloy cutting tools for 7075 aviation Al-alloy [J]. Chin. J. Mater. Res., 2019, 33: 15
doi: 10.11901/1005.3093.2017.774
|
|
(王宜豹, 黄楠, 刘鲁生等. 加工7075航空铝合金用金刚石涂层刀具的制备及其切削性能 [J]. 材料研究学报, 2019, 33: 15)
doi: 10.11901/1005.3093.2017.774
|
[3] |
Castella C, Peter I, Lombardo S, et al. Self-hardening aluminum alloys and their potential applications in the automotive industry [J]. Metall. Ital., 2018, 5: 19
|
[4] |
An W, Kim D, Kim B H, et al. Effects of exposure temperature on tensile and charpy impact properties of the 7xxx aluminum alloy for aerospace applications [J]. Korean J. Met. Mater., 2019, 57: 214
|
[5] |
Xu X J, Jia W J, Huang P, et al. Anisotropy of Al-Zn-Mg-Cu aluminum alloy under different aging conditions [J]. Heat Treat. Met., 2018, 43(4): 57
|
|
(许晓静, 贾伟杰, 黄鹏等. 不同时效工艺处理Al-Zn-Mg-Cu铝合金的各向异性 [J]. 金属热处理, 2018, 43(4): 57)
|
[6] |
Orozco-Caballero A, Álvarez-Leal M, Verdera D, et al. Evaluation of the mechanical anisotropy and the deformation mechanism in a multi-pass friction stir processed Al-Zn-Mg-Cu alloy [J]. Mater. Des., 2017, 125: 116
|
[7] |
Andreiko I M, Holovatyuk Y V, Ostash O P, et al. Anisotropy of the cyclic crack resistance of aluminum alloys after long-term operation [J]. Mater. Sci., 2016, 52: 83
|
[8] |
Jiao H B, Chen S D, Chen S Y, et al. Effect of Mn and Zr on the anisotropy of Al-Zn-Mg-Cu aluminum alloy [J]. Mater. Rev., 2018, 32: 937
|
|
(焦慧彬, 陈善达, 陈送义等. Mn和Zr对Al-Zn-Mg-Cu铝合金各向异性的影响 [J]. 材料导报, 2018, 32(3): 937)
|
[9] |
Chen Y X, Zhang J G, Wang H, et al. EBSD investigation on the anisotropy of 2124 aluminum alloy [J]. Heat Treat. Met., 2011, 36(5): 79
|
|
(陈艳霞, 张建国, 王泓等. 2124铝合金各向异性的EBSD研究 [J]. 金属热处理, 2011, 36(5): 79)
|
[10] |
Fu Y Z, Jiang Z, Tabie V M, et al. Anisotropy of microstructure and properties of Al-10.22 Zn-2.87 Mg-1.2 Cu-0.213 Zr alloy [J]. Mater. Res. Expr., 2019, 6(10): 106559
|
[11] |
Chen J, Duan Y L, Peng X Y, et al. Fatigue performance of 7475-T7351 aluminum alloy plate [J]. Chin. J. Nonferrous Met., 2015, 25: 890
|
|
(陈军, 段雨露, 彭小燕等. 7475-T7351铝合金厚板的疲劳性能 [J]. 中国有色金属学报, 2015, 25: 890)
|
[12] |
Jian H G, Yin Z M, Jiang F, et al. EBSD analysis of fatigue crack growth of 2124 aluminum alloy for aviation [J]. Rare Met. Mater. Eng., 2014, 43: 1332
|
[13] |
Zhang X Y, Leng L, Wang Z J. Low cycle fatigue behavior of Al-Zn-Mg-Cu alloy containing Zr and Sc [J]. Mater. Rev., 2017, 31(20): 63
|
|
(张笑宇, 冷利, 王占军. 含Zr、Sc的Al-Zn-Mg-Cu合金的低周疲劳行为 [J]. 材料导报, 2017, 31(20): 63)
|
[14] |
Chen Y Z, Hao H, Wang L F, et al. Mean stress relaxation during low-cycle fatigue of aluminum alloy 7050-T7451 [J]. J. Mater. Sci. Eng., 2013, 31: 427
|
|
(陈胤桢, 郝红, 王利发等. 7050-T7451铝合金低周疲劳平均应力松弛规律 [J]. 材料科学与工程学报, 2013, 31: 427)
|
[15] |
Zhu Q Y, Chen L J, Zhu G Q, et al. Effect of Sc addition on low-cycle fatigue properties of extruded Al-Zn-Mg-Cu-Zr alloy [J]. Mater. Sci. Technol., 2019, 36: 118
|
[16] |
Zou X L, Yan H, Chen X H. Evolution of second phases and mechanical properties of 7075 Al alloy processed by solution heat treatment [J]. Trans. Nonferrous Met. Soc. China, 2017, 27: 2146
|
[17] |
Cong F G, Zhao G, Tian N, et al. Inhomogeneity of properties of 7150-T7751 aluminum alloy thick plate [J]. Chin. J. Mater. Res., 2013, 27: 144
|
|
(丛福官, 赵刚, 田妮等. 7150-T7751铝合金厚板性能的不均匀性 [J]. 材料研究学报, 2013, 27: 144)
|
[18] |
Ma Z F, Zhao W Y, Lu Z. Impact of texture and microstructure on in-plane anisotropy of ultra-high strength aluminium alloy [J]. J. Aeronaut. Mater., 2015, 35(3): 1
|
|
(马志锋, 赵唯一, 陆政. 织构及组织结构对超高强铝合金平面力学性能的影响 [J]. 航空材料学报, 2015, 35(3): 1)
|
[19] |
Guo H B, Yuan G C, Lin D H, et al. Analysis of mechanical anisotropy in casting-rolling Al-Mn alloy sheet [J]. Spec. Cast. Nonferrous Alloys, 2015, 35: 1315
|
|
(郭海斌, 袁鸽成, 林典海等. 铸轧Al-Mn合金板材的各向异性分析 [J]. 特种铸造及有色合金, 2015, 35: 1315)
|
[20] |
Gao P F, Lei Z N, Li Y K, et al. Low-cycle fatigue behavior and property of TA15 titanium alloy with tri-modal microstructure [J]. Mat. Sci. Eng. A, 2018, 736: 1
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|