Please wait a minute...
Chinese Journal of Materials Research  2020, Vol. 34 Issue (9): 691-696    DOI: 10.11901/1005.3093.2020.111
ARTICLES Current Issue | Archive | Adv Search |
Preparation and Properties of a Novel AG/PVA/CB[7] Hydrogel Reinforced by Microcrystalline and Hydrogen Bonds
YANG Qin(), ZHAO Weijie, ZHAO Na, WANG Ruodi, CHEN Cheng
School of Chemistry and Chemical Engineering, Xi 'an University of Architecture and Technology, Xi 'an 710055, China
Cite this article: 

YANG Qin, ZHAO Weijie, ZHAO Na, WANG Ruodi, CHEN Cheng. Preparation and Properties of a Novel AG/PVA/CB[7] Hydrogel Reinforced by Microcrystalline and Hydrogen Bonds. Chinese Journal of Materials Research, 2020, 34(9): 691-696.

Download:  HTML  PDF(8098KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A novel dual-network hydrogel AG/PVA/CB[7] was prepared with natural polymer agarose (AG) as the first physical crosslinking network, polyvinyl alcohol (PVA) as the second physical crosslinking network, and cucurbituril[7] (CB[7]) as the crosslinking agent. The morphology, structure, crystallinity and crosslinking mode of the AG/PVA/CB[7] hydrogel were characterized by SEM, FT-IR and XRD. The mechanical properties, swelling properties and re-healing properties of the hydrogel were investigated. The results show that the hydrogel presents high strength and re-healing properties. The mechanical properties of the hydrogel may be enhanced by cross-linking the polymer chains with hydrogen bonds and microcrystals. The mechanical properties of the hydrogel were not only increased with the increase of freeze-thaw times but also improved by the addition of crosslinking agent CB[7]. After 5 freeze-thaw cycles, the hydrogel presents tensile strength of 0.37 MPa, young's modulus of 0.23 MPa and equilibrium swelling rate of 140%.

Key words:  polymer materials      self-healing hydrogel      structural characterization      biocompatibility      microcrystalline crosslinking     
Received:  13 April 2020     
ZTFLH:  TQ427.26  
Fund: Natural Science Foundation of Shaanxi Province(2019JM-541)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.111     OR     https://www.cjmr.org/EN/Y2020/V34/I9/691

Fig.1  Scanning electron microscopy of AG/PVA/CB[7] hydrogel
Fig.2  FTIR spectrum of PVA (a), AG/PVA (b), and AG/PVA /CB[7] (c)
Fig.3  X-ray diffraction pattern of AG/PVA/CB[7] hydrogel
Fig.4  Structure diagram of AG/PVA/CB[7] hydrogel
Fig.5  Stress-Strain curves of PVA、AG/PVA and PVA/AG/CB[7] hydrogel
Fig.6  Stress-strain curves of AG/PVA/CB[7] hydrogel with different freezing-thawing times
Freezing-tdawing times123456
Crosslink density /×10-4 mol·cm-30.932.94.56.67.26.4
Table 1  Crosslink density of AG/PVA/CB[7] hydrogels
Fig.7  Self-healing process of PVA/AG hydrogel
Fig.8  Self-healing process of PVA/AG/CB[7] hydrogel
Fig.9  Effects of temperature on the swelling properties of AG/PVA/CB[7] hydrogel
[1] Yazdanpanah A, Tahmasbi M, Amoabediny G, et al. Fabrication and characterization of electrospun poly-L-lactide/gelatin graded tubular scaffolds: Toward a new design for performance enhancement in vascular tissue engineering [J]. Prog. Nat. Sci.: Mater. Int.l, 2015, 25(5): 405
[2] Li M, Gu Q, Chen M, et al. Controlled delivery of icariin on small intestine submucosa for bone tissue engineering [J]. Mater. Sci. Eng., C, 2, 71: 260
[3] Shin M H, Lee D Y, Wohlgemuth G, et al. Global metabolite profiling of agarose degradation by saccharophagus degradans [J]. New Biotechnol., 2010, 27(2): 156
[4] Scionti G, Moral M, Toledano M, et al. Effect of the hydration on the biomechanical properties in a fibrin-agarose tissue-like model [J]. J. Biomed. Mater. Res., Part A, 2014, 102(8): 2573
[5] Sarem M, Moztarzadeh F, Mozafari M. How can genipin assist gelatin/carbohydrate chitosan scaffolds to act as replacements of load-bearing soft tissues [J]. Carbohydr. Polym., 2013, 93(2): 635
pmid: 23499106
[6] Cecilia A, Baecker A, Hamann E, et al. Optimizing structural and mechanical properties of cryogel scaffolds for use in prostate cancer cell culturing [J]. Mater. Sci. Eng., C, 2017, 71: 465
[7] Fischer K M, Scott T E, Browe D P, et al. Hydrogels for skeletal muscle regeneration [J]. Regener. Eng. Transl. Med., 2020: 1
[8] Tsutsui T W. Dental pulp stem cells: advances to applications [J]. Stem Cells Cloning: Adv. Appl., 2020, 13: 33
[9] Lopez-Heredia M A, Agata T, Mendes A C, et al. Bioinspired, biomimetic, double enzymatic mineralization of hydrogels for bone regeneration with calcium carbonate [J]. Mater. Lett., 2017, 190: 13
[10] Awadhiya A, Tyeb S, Rathore K, et al. Agarose bioplastic based drug delivery system for surgical and wound dressings [J]. Eng. Life Sci., 2017, 17(2): 204
doi: 10.1002/elsc.201500116 pmid: 32624768
[11] Oreffo R, Cidonio G, Cooke M, et al. Printing bone in a gel: using nanocomposite bioink to print functionalised bone scaffolds [J]. Mater. Today, 2019, 4: 100028
[12] Dekosky B J, Dormer N H, Ingavle G C, et al. Hierarchically designed agarose and poly(ethylene glycol) interpenetrating network hydrogels for cartilage tissue engineering [J]. Tissue Eng., Part C, 2010, 16(6): 1533
[13] Yan K, Xu F Y, Li S H, et al. Ice-templating of chitosan/agarose porous composite hydrogel with adjustable water-sensitive shape memory property and multi-staged degradation performance [J]. Colloids Surf., B,2020,190:110907
[14] Yang Q, Lv J. A pH-responsive self-healing gel with cross-linking of cucurbituril(CB[n]) via hydrogen bonding [J]. Chem. Lett., 2018, 47(2): 192
[15] Yang Q, Zhao N, Fang C J, et al. preparation and properties of high elastic self-healing hydrogel (C3H5O)1CB [7]/PAA [J]. Chin. J. Chem. Eng., 2018, 69(12): 5326
(杨琴, 赵娜, 房春娟等. 高弹性自愈水凝胶(C3H5O)1CB[7]/PAA的制备及性能 [J]. 化工学报, 2018, 69(12): 5326)
[16] Yang Q, Fang C J, Zhao N, et al. self-healing and swelling kinetics of new polyacrylic acid hydrogels [J]. Chin. J. Mater. Res., 2018, 32(8): 625
(杨琴, 房春娟, 赵娜等. 新型聚丙烯酸水凝胶的自愈及其溶胀动力学 [J].材料研究学报, 2018, 32(8): 625)
[17] Bi Q, Hu Y P, Yang Q, et al. A two-step approach for cucurbit[n]uril compound separating by water and hydrochloric acid [J]. Chin. J. Org. Chem., 2007, 27(7): 880
(毕强, 胡英鹏, 杨琴等. 水—盐酸两步分离瓜环混合物 [J]. 有机化学, 2007, 27(7): 880)
[18] Yang Q, Li X L, Jiang Y, et al. Microwave synthesis, charaterisation and electrochemical property of cucurbit[n]urils [J]. Mater. Res. Innovations, 2014, 18(4): 280
[19] Xiang Y, Peng Z, Chen D. A new polymer/clay nano-composite hydrogel with improved response rate and tensile mechanical properties [J]. Eur. Polym. J., 2006, 42(9): 2125
[20] Rabbi M A, Rahman M M, Minami H, et al. Biocomposites of synthetic polymer modified microcrystalline jute cellulose particles and their hemolytic behavior [J]. Cellulose, 2019, 26(16): 8713
[21] Yang J h, Xie R S, Liu T X, et al. Preparation and characterization of high-performance hydrogels based on hydrogen bonding [J]. Sci. Chin. Ser. E, 2016, 10(46): 1057
(杨建海, 谢若森, 刘通秀等. 基于氢键作用的高性能水凝胶的制备与表征 [J]. 中国科学: 技术科学, 2016, 10(46): 1057)
[22] Raquel P R, Luis C R, Antonio S G, et al. Intact charge variant analysis of ziv-aflibercept by cationic exchange liquid chromatography as a proof of concept: Comparison between volatile and non-volatile salts in the mobile phase [J]. J. Pharm. Biomed. Anal.,2020, 185: 113233
doi: 10.1016/j.jpba.2020.113233 pmid: 32169790
[1] YE Jiaofeng, WANG Fei, ZUO Yang, ZHANG Junxiang, LUO Xiaoxiao, FENG Libang. Epoxy Resin-modified Thermo-reversible Polyurethane with High Strength, Toughness, and Self-healing Performance[J]. 材料研究学报, 2023, 37(4): 257-263.
[2] LI Hanlou, JIAO Xiaoguang, ZHU Huanhuan, ZHAO Xiaohuan, JIAO Qingze, FENG Caihong, ZHAO Yun. Synthesis of Branched Fluorine-containing Polyesters and their Properties[J]. 材料研究学报, 2023, 37(4): 315-320.
[3] MA Yizhou, ZHAO Qiuying, YANG Lu, QIU Jinhao. Preparation and Dielectric Energy Storage Properties of Thermoplastic Polyimide/Polyvinylidene Fluoride Composite Film[J]. 材料研究学报, 2023, 37(2): 89-94.
[4] YANG Qin, WANG Zhen, FANG Chunjuan, WANG Ruodi, GAO Dahang. Preparation and Adsorption Properties of CMC/AA/CB[8]/BET Gel with Controllable Mechanical Properties[J]. 材料研究学报, 2022, 36(8): 628-634.
[5] YIN Jie, HU Yuntao, LIU Hui, YANG Yifei, WANG Yifeng. Constructing Polyaniline/Alginate Film by Electrodeposition and Its Electrochemical Properties[J]. 材料研究学报, 2022, 36(4): 314-320.
[6] SHEN Yanlong, LI Beigang. Preparation of Magnetic Amino Acid-Functionalized Aluminum Alginate Gel Polymer and its Super Adsorption on Azo Dyes[J]. 材料研究学报, 2022, 36(3): 220-230.
[7] LONG Qing, WANG Chuanyang. Thermal Degradation Behavior and Kinetics Analysis of PMMA with Different Carbon Black Contents[J]. 材料研究学报, 2022, 36(11): 837-844.
[8] LI Jianzhong, ZHU Boxuan, WANG Zhenyu, ZHAO Jing, FAN Lianhui, YANG Ke. Preparation and Properties of Copper-carrying Polydopamine Coating on Ureteral Stent[J]. 材料研究学报, 2022, 36(10): 721-729.
[9] JIANG Ping, WU Lihua, LV Taiyong, Pérez-Rigueiro José, WANG Anping. Repetitive Stretching Tensile Behavior and Properties of Spider Major Ampullate Gland Silk[J]. 材料研究学报, 2022, 36(10): 747-759.
[10] YAN Jun, YANG Jin, WANG Tao, XU Guilong, LI Zhaohui. Preparation and Properties of Aqueous Phenolic Resin Modified by Organosilicone Oil[J]. 材料研究学报, 2021, 35(9): 651-656.
[11] ZHANG Hao, LI Fan, CHANG Na, WANG Haitao, CHENG Bowen, WANG Panlei. Preparation of Carboxylic Acid Grafted Starch Adsorption Resin and Its Dye Removal Performance[J]. 材料研究学报, 2021, 35(6): 419-432.
[12] SUN Liying, QIAN Jianhua, ZHAO Yongfang. Preparation and Performance of AgNWs -TPU/PVDF Flexible Film Capacitance Sensors[J]. 材料研究学报, 2021, 35(6): 441-448.
[13] TANG Kaiyuan, HUANG Yang, HUANG Xiangzhou, GE Ying, LI Pinting, YUAN Fanshu, ZHANG Weiwei, SUN Dongping. Physicochemical Properties of Carbonized Bacterial Cellulose and Its Application in Methanol Electrocatalysis[J]. 材料研究学报, 2021, 35(4): 259-270.
[14] SU Chenwen, ZHANG Tingyue, GUO Liwei, LI Le, YANG Ping, LIU Yanqiu. Preparation of Thiol-ene Hydrogels for Extracellular Matrix Simulation[J]. 材料研究学报, 2021, 35(12): 903-910.
[15] ZHANG Xiangyang, ZHANG Qiyang, ZHENG Tao, TANG Tao, LIU Hao, LIU Guojin, ZHU Hailin, ZHU Haifeng. Fabrication of Composite Material Based on MOFs and its Adsorption Properties for Methylene Blue Dyes[J]. 材料研究学报, 2021, 35(11): 866-872.
No Suggested Reading articles found!