Please wait a minute...
Chinese Journal of Materials Research  2019, Vol. 33 Issue (3): 185-190    DOI: 10.11901/1005.3093.2018.374
Current Issue | Archive | Adv Search |
Effect of Nitrogen Flow Ratio on Microstructure and Property of High-Entropy Alloy Films (CoCrFeNi)Nx Prepared by Magnetron Sputtering
Xiaodong LIU1,Shuyong TAN2,Wenyi HUO1,Xuhai ZHANG1,Qiyue SHAO1,Feng FANG1()
1. Jiangsu Key Laboratory of Advanced Metallic Materials, Southeast University, Nanjing, 211189, China
2. School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing 211167, China
Cite this article: 

Xiaodong LIU,Shuyong TAN,Wenyi HUO,Xuhai ZHANG,Qiyue SHAO,Feng FANG. Effect of Nitrogen Flow Ratio on Microstructure and Property of High-Entropy Alloy Films (CoCrFeNi)Nx Prepared by Magnetron Sputtering. Chinese Journal of Materials Research, 2019, 33(3): 185-190.

Download:  HTML  PDF(3304KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

High-entropy alloy films of (CoCrFeNi)Nx were prepared by direct current magnetron sputtering. The effect of nitrogen flow ratio on the microstructure, mechanical-, electrical- and magnetic- properties of the films were investigated. The results show that all dense (CoCrFeNi)Nx films prepared with different nitrogen flow ratio all consist of simple single face-centered cubic phase with (200) preferred orientation. With the increase of nitrogen flow ratio from 0 to 30%, both the hardness and elasticity modulus increase. The max values of the hardness and elasticity modulus are 14 GPa and 212 GPa, respectively. The resistivity of (CoCrFeNi)Nx films increases with the increasing nitrogen flow ratio, while the saturation magnetization and permeability decrease. The max value of the resistivity is 138 μΩ?cm, the highest saturation magnetization is 427.43 emu/cm3, and the coercivity remains around 0.

Key words:  surface and interface in the materials      magnetron sputtering      (CoCrFeNi)Nx      hardness      resistivity      magnetic properties     
Received:  06 June 2018     
ZTFLH:  TB43  
Fund: National Natural Science Foundation of China(51371050);Industry-University Strategic Resear-ch Fund of Jiangsu Province(BY2016076-08);"Six Talent Peaks" Project of Jiangsu Province(2015-XCL-004);Key Research and Development Projects in Zhangjiagang(ZKG1614);Project Foundation of Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology(ASMA201708)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2018.374     OR     https://www.cjmr.org/EN/Y2019/V33/I3/185

Nitrogen flow ratioCoCrFeNiN
RN=10%22.2420.6415.6529.4711.99
RN=20%20.1119.0714.5228.1118.18
RN=30%18.9117.9014.6526.7921.75
Table 1  Film composition with different nitrogen flow ratio (%, atomic fraction)
Fig.1  XRD diffraction pattern of (CoCrFeNi)Nxhigh entropy alloy films with different nitrogen flow ratio
Fig.2  Lattice parameter and average grain size of (CoCr-FeNi)Nx films with different nitrogen flow ratio
Fig.3  Surface images of (CoCrFeNi)Nx films with different nitrogen flow ratio (a) RN=10%, (b) RN=20%, (c) RN=30%
Fig.4  AFM morphologies of (CoCrFeNi)Nx films with different nitrogen flow ratio (a) RN=10%, (b) RN=20%, (c) RN=30%
Fig.5  Cross-sectional images of (CoCrFeNi)Nx films with different nitrogen flow ratio (a) RN=10%, (b) RN=20%, (c) RN=30%
Fig.6  Relationship between deposition rates and nitrogen flow ratio for (CoCrFeNi)Nx films
Fig.7  Relationship between hardness and elasticity modulus and nitrogen flow ratio for (CoCrFeNi)Nx films
Fig.8  Relationship between resistivity and nitrogen flow ratio for (CoCrFeNi)Nx films
Fig.9  Relationship between magnetic properties and nitrogen flow ratio for (CoCrFeNi)Nx films
[1] YehJ W, ChenS K, LinS J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
[2] ZhangY. Amorphous and High-entropy Alloys [M]. Beijing: Science Press, 2010
[2] (张 勇. 非晶和高熵合金 [M]. 北京: 科学出版社, 2010
[3] WuW H, YangC C, YehJ W. Industrial development of high-entropy alloys [J]. Ann. Chim. Sci. Mat., 2006, 31: 737
[4] WangJ, HuangW G. Microstructure and mechanical properties of CrMoVNbFex high-entropy alloys [J]. Chin. J. Mater. Res., 2016, 30: 609
[4] (王 江, 黄维刚. CrMoVNbFex高熵合金微观组织结构与力学性能 [J]. 材料研究学报, 2016, 30: 609)
[5] ZhangY, LuZ P, MaS G, et al. Guidelines in predicting phase formation of high-entropy alloys [J]. MRS Commun., 2014, 4: 57
[6] SinghS, WanderkaN, MurtyB S, et al. Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy [J]. Acta Mater., 2011, 59: 182
[7] TungC C, YehJ W, ShunT T, et al. On the elemental effect of AlCoCrCuFeNi high-entropy alloy system [J]. Mater. Lett., 2007, 61: 1
[8] DoliqueV, ThomannA L, BraultP, et al. Complex structure/composition relationship in thin films of AlCoCrCuFeNi high entropy alloy [J]. Mater. Chem. Phys., 2009, 117: 142
[9] BraeckmanB R, BoydensF, HidalgoH, et al. High entropy alloy thin films deposited by magnetron sputtering of powder targets [J]. Thin Sol. Film, 2015, 580: 71
[10] BraeckmanB R, MisjákF, RadnócziG, et al. The influence of Ge and In addition on the phase formation of CoCrCuFeNi high-entropy alloy thin films [J]. Thin Sol. Film, 2016, 616: 703
[11] PraveenS, BasuJ, KashyapS, et al. Exceptional resistance to grain growth in nanocrystalline CoCrFeNi high entropy alloy at high homologous temperatures [J]. J. Alloy. Compd., 2015, 662: 361
[12] HuoW Y, ZhouH, FangF, et al. Strain-rate effect upon the tensile behavior of CoCrFeNi high-entropy alloys [J]. Mater. Sci. Eng., 2017, 689A: 366
[13] BraeckmanB R, DeplaD. Structure formation and properties of sputter deposited Nbx-CoCrCuFeNi high entropy alloy thin films [J]. J. Alloy. Compd., 2015, 646: 810
[14] ChangS Y, LinS Y, HuangY C. Microstructure and mechanical properties of multi-component (AlCrTaTiZr) NxCy nanocomposite coatings [J]. Thin Sol. Film, 2011, 519: 4865
[15] BraicV, BalaceanuM, BraicM, et al. Characterization of multi-principal-element (TiZrNbHfTa)N and (TiZrNbHfTa)C coatings for biomedical applications [J]. J. Mech. Behav. Biom. Mater., 2012, 10: 197
[16] TsaiD C, DengM J, ChangZ C, et al. Oxidation resistance and characterization of (AlCrMoTaTi)-Six-N coating deposited via magnetron sputtering [J]. J. Alloy. Compd., 2015, 647: 179
[17] ChangH W, HuangP K, DavisonA, et al. Nitride films deposited from an equimolar Al-Cr-Mo-Si-Ti alloy target by reactive direct current magnetron sputtering [J]. Thin Sol. Film, 2008, 516: 6402
[18] LiuL, ZhuJ B, HouC, et al. Dense and smooth amorphous films of multicomponent FeCoNiCuVZrAl high-entropy alloy deposited by direct current magnetron sputtering [J]. Mater. Des., 2013, 46: 675
[19] ChenT K, ShunT T, YehJ W, et al. Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering [J]. Surf. Coat. Technol., 2004, 188-189: 193
[20] LinP C, ChengC Y, YehJ W, et al. Soft magnetic properties of high-entropy Fe-Co-Ni-Cr-Al-Si thin films [J]. Entropy, 2016, 18: 308
[21] YuY, LiuW M, ZhangT B, et al. Microstructure and tribological properties of AlCoCrFeNiTi0.5 high-entropy alloy in hydrogen peroxide solution [J]. Metall. Mater. Trans., 2014, 45A: 201
[22] YangD, JonnalagaddaR, RogersB R. Texture and surface roughness of PRCV D aluminum films [J]. Thin Sol. Film, 1998, 332: 312
[23] ChandraR, ChawlaA K, KaurD, et al. Structural, optical and electronic properties of nanocrystalline TiN films [J]. Nanotechnology, 2005, 16: 3053
[24] TianM B, LiZ C. Thin Film Technology and Thin Film Materials [M]. Beijing: Peking University Press, 2011
[24] (田民波, 李正操. 薄膜技术与薄膜材料 [M]. 北京: 清华大学出版社, 2011)
[25] RenB, ShenZ G, LiuZ X. Structure and mechanical properties of multi-element (AlCrMnMoNiZr)Nx coatings by reactive magnetron sputtering [J]. J. Alloy. Compd., 2013, 560: 171
[26] TianM B. Magnetic Materials [M]. Beijing: Peking University Press, 2001
[26] (田民波. 磁性材料 [M]. 北京: 清华大学出版社, 2001)
[27] TangW, DengL J, XuK W. Relationship between resistivity of metallic film and its surface roughness, residual stress [J]. Rare Met. Mat. Eng., 2008, 37: 617
[27] (唐 武, 邓龙江, 徐可为. 金属薄膜电阻率与表面粗糙度、残余应力的关系 [J]. 稀有金属材料与工程, 2008, 37: 617)
[1] WANG Qian, PU Lei, JIA Caixia, LI Zhixin, LI Jun. Inhomogeneity of Interface Modification of Carbon Fiber/Epoxy Composites[J]. 材料研究学报, 2023, 37(9): 668-674.
[2] LU Yimin, MA Lifang, WANG Hai, XI Lin, XU Manman, YANG Chunlai. Carbon-base Protective Coating Grown by Pulsed Laser Deposition on Copper Substrate[J]. 材料研究学报, 2023, 37(9): 706-712.
[3] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[4] FENG Ye, CHEN Zhiyong, JIANG Sumeng, GONG Jun, SHAN Yiyin, LIU Jianrong, WANG Qingjiang. Effect of a NiCrAlSiY Coating on Cyclic Oxidation and Room Temperature Tensile Properties of Ti65 Alloy Plate[J]. 材料研究学报, 2023, 37(7): 523-534.
[5] YAN Chunliang, GUO Peng, ZHOU Jingyuan, WANG Aiying. Electrical Properties and Carrier Transport Behavior of Cu Doped Amorphous Carbon Films[J]. 材料研究学报, 2023, 37(10): 747-758.
[6] CHEN Kaiwang, ZHANG Penglin, LI Shuwang, NIU Xianming, HU Chunlian. High-temperature Tribological Properties for Plasma Spraying Coating of Ni-P Plated Mullite Powders[J]. 材料研究学报, 2023, 37(1): 39-46.
[7] SHAN Weiyao, WANG Yongli, LI Jing, XIONG Liangyin, DU Xiaoming, LIU Shi. High Temperature Oxidation Resistance of Cr Based Coating on Zirconium Alloy[J]. 材料研究学报, 2022, 36(9): 699-705.
[8] ZHANG Peng, HUANG Dong, ZHANG Fuquan, YE Chong, WU Xiao, WU Huang. Effect of Graphitization Degree of Mesophase Pitch-based Carbon Fibers on Carbon Fiber/Al Interface Damage[J]. 材料研究学报, 2022, 36(8): 579-590.
[9] HE Ying, LI Chaoqun, CHEN Xiaoli, LONG Zhimei, LAI Jiaqi, SHAO Bin, MA Yilong, CHEN Dengming, DONG Jiling. Recent Development for Preparation Processes of Sm2Fe17N x Powders with High Magnetic Properties[J]. 材料研究学报, 2022, 36(5): 321-331.
[10] MENG Xiangdong, ZHEN Chao, LIU Gang, CHENG Huiming. Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting[J]. 材料研究学报, 2022, 36(4): 241-249.
[11] ZHANG Hongliang, ZHAO Guoqing, OU Junfei, Amirfazli Alidad. Superhydrophobic Cotton Fabric Based on Polydopamine via Simple One-Pot Immersion for Oil Water Separation[J]. 材料研究学报, 2022, 36(2): 114-122.
[12] CUI Li, SUN Lili, GUO Peng, MA Xin, WANG Shuyuan, WANG Aiying. Effect of Deposition Time on Structure and Performance of Diamond-like Carbon Films on PEEK[J]. 材料研究学报, 2022, 36(11): 801-810.
[13] LI Jianzhong, ZHU Boxuan, WANG Zhenyu, ZHAO Jing, FAN Lianhui, YANG Ke. Preparation and Properties of Copper-carrying Polydopamine Coating on Ureteral Stent[J]. 材料研究学报, 2022, 36(10): 721-729.
[14] ZHANG Jun, PENG Lijing, WANG Yu, WANG Xiaoyang, WANG Nan, WANG Meihan. Effect of Al/Ti Molar Ratio on Phase Structure and Hardness of (CrTiAl)N Films[J]. 材料研究学报, 2022, 36(1): 55-61.
[15] LI Rui, WANG Hao, ZHANG Tiangang, NIU Wei. Microstructure and Properties of Laser Clad Ti2Ni+TiC+Al2O3+CrxSy Composite Coating on Ti811 Alloy[J]. 材料研究学报, 2022, 36(1): 62-72.
No Suggested Reading articles found!