Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (10): 721-729    DOI: 10.11901/1005.3093.2021.323
ARTICLES Current Issue | Archive | Adv Search |
Preparation and Properties of Copper-carrying Polydopamine Coating on Ureteral Stent
LI Jianzhong1,2, ZHU Boxuan1, WANG Zhenyu2, ZHAO Jing1(), FAN Lianhui2, YANG Ke1
1.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.General Hospital of Northern Theater Command, PLA, Shenyang 110083, China
Cite this article: 

LI Jianzhong, ZHU Boxuan, WANG Zhenyu, ZHAO Jing, FAN Lianhui, YANG Ke. Preparation and Properties of Copper-carrying Polydopamine Coating on Ureteral Stent. Chinese Journal of Materials Research, 2022, 36(10): 721-729.

Download:  HTML  PDF(3303KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Bacteria adhesion and encrustation formation on the surface of ureteral stents have been common complications clinically. Herewith, the Cu grafting polydopamine coating was prepared on 316L stainless steel via polydopamine graft agent assisted electroless Cu plating method, in order to create a coating with performance of anti-infection, anti-stone formation and good biocompatibility for the ureteral stent surface. While the surface morphology, composition and copper ions release of the coatings were assessed by means of scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy and inductively coupled plasma mass spectrometry. Samples were incubated with bacteria and cells respectively, so that to examine the antibacterial ability, encrustation resistance and biocompatibility of coatings. The results show that the coating is evenly distributed. The copper in the coating consists of Cu, CuO and Cu2O and its thickness is 27.0 nm. The content of releasing copper for each day remains nearly constant after immersion in artificial urine. The antibacterial rates against Escherichia coli and Staphylococcus aureus are 96.2% and 95.9% after incubating for 24 hours, respectively. The contents of calcium and magnesium of samples, which are deposited in the human urine coupled with Staphylococcus aureus for 30 days, are 48.7 mg/L and 235.3 mg/L, respectively, which is significantly lower than that of the control group. Cells proliferation assay shows no cytotoxicity.

Key words:  surface and interface in the materials      functional coating      chemical grafting copper      ureteral stent      anti-encrustation      biocompatibility     
Received:  24 May 2021     
ZTFLH:  O647.9  
Fund: National Key Research and Development Project(2018YFC1105504);Natural Science Foundation of Liaoning Province(2019-BS-255);Science and Technology Program of Liaoning Province(2020JH2/10300159)
About author:  ZHAO Jing, Tel: (024)83978251, E-mail: zhaojing@imr.ac.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.323     OR     https://www.cjmr.org/EN/Y2022/V36/I10/721

ComponentNaClNaH2PO4Na3C6H5O7MgSO4NaSO4KClNa2C2O4CaCl2
Quantity/g6.174.590.9440.4632.4084.750.0430.638
Table 1  Chemical component of the artificial urine[23]
Fig.1  SEM images of samples (a) 316L stainless steel, (b) copper loaded polydopamine coating
Fig.2  Surface scanning images of copper loaded polydopamine coating (a) Fe element, (b) Cu element, (c) O element and (d) C element
Fig.3  AFM morphology of samples (a) 316L stainless steel, (b) polydopamine coating, (c) copper loaded polydopamine coating
Fig.4  Thickness of coating measured by spectroscopic ellipsometer
Fig.5  XPS analysis of copper loaded polydopamine coating (a) full spectrum, (b) N element, (c) C element and (d) Cu element
Sputtering time/sCuCuOCu2O
402.90.81.5
604.52.63.4
807.53.95.4
Table 2  Content of Cu, CuO and Cu2O of copper loaded polydopamine coating in different sputtering time(mass fraction, %)
Fig.6  Release amounts of Cu ions of different samples in artificial urine for every day
Fig.7  Live bacteria number and antibacterial rate of different samples after incubation for 24 h (a) S.aureus, 316L SS; (b) S.aureus, copper loaded polydopamine coating; (c) E.coli, 316L SS; (d) E.coli, copper loaded polydopamine coating; (e) antibacterial rate
Fig.8  Live bacteria number and antibacterial rate of different samples after immersion for 30 d (a) S.aureus, 316L SS; (b) S.aureus, copper loaded polydopamine coating; (c) E.coli, 316L SS; (d) E.coli, copper loaded polydopamine coating; (e) antibacterial rate
Fig.9  Contents of calcium (a) and magnesium (b) ions on the surface of different materials after immersion in urine for 30 d
Fig.10  Relative proliferation rate of UECs cultured with different material extracts for different times
Fig.11  Dopamine polymerization formula[26]
1 Garg A, Mishra K G, Bharti P K, et al. Observation of double J stent bacterial colonisation and its correlation with bacteriuria frequency [J]. J. Evol. Med. Dent. Sci., 2017, 6: 5861
2 Szell T, Dressler F F, Goelz H, et al. In vitro effects of a novel coating agent on bacterial biofilm development on ureteral stents [J]. J. Endourol., 2019, 33: 225
doi: 10.1089/end.2018.0616
3 Lombardo R, Tubaro A, Nunzio C D. Ureteral stent encrustation: epidemiology, pathophysiology, management and current technology [J]. J. Urol., 2021, 205: 68
doi: 10.1097/JU.0000000000001343
4 Oderda M, Lacquaniti S, Fasolis G. Allium stent for the treatment of a malignant ureteral stenosis: a paradigmatic case [J]. Urologia J., 2018, 85: 87
doi: 10.5301/uj.5000249
5 Choi J, Chung K J, Choo S H, et al. Long-term outcomes of two types of metal stent for chronic benign ureteral strictures [J]. BMC Urol., 2019, 19: 34
doi: 10.1186/s12894-019-0465-5 pmid: 31060531
6 Rebl H, Renner J, Kram W, et al. Prevention of encrustation on ureteral stents: which surface parameters provide guidance for the development of novel stent materials? [J]. Polymers, 2020, 12: 558
doi: 10.3390/polym12030558
7 Roy R, Tiwari M, Donelli G, et al. Strategies for combating bacterial biofilms: a focus on anti-biofilm agents and their mechanisms of action [J]. Virulence, 2018, 9: 522
doi: 10.1080/21505594.2017.1313372 pmid: 28362216
8 Mosayyebi A, Vijayakumar A, Yue Y Q, et al. Engineering solutions to ureteral stents: material, coating and design [J]. Cent. Eur. J. Urol., 2017, 70: 270
9 Riedl C R, Witkowski M, Plas E, et al. Heparin coating reduces encrustation of ureteral stents: a preliminary report [J]. Int. J. Antimicrob. Agents, 2002, 19: 507
doi: 10.1016/S0924-8579(02)00097-3
10 Chew B H, Davoudi H, Li J M, et al. An in vivo porcine evaluation of the safety, bioavailability, and tissue penetration of a ketorolac drug-eluting ureteral stent designed to improve comfort [J]. J. Endourol., 2010, 24: 1023
doi: 10.1089/end.2009.0523 pmid: 20367085
11 Krambeck A E, Walsh R S, Denstedt J D, et al. A novel drug eluting ureteral stent: a prospective, randomized, multicenter clinical trial to evaluate the safety and effectiveness of a ketorolac loaded ureteral stent [J]. J. Urol., 2010, 183: 1037
doi: 10.1016/j.juro.2009.11.035 pmid: 20092835
12 Felício M R, Silveira G G O S, Oshiro K G N, et al. Polyalanine peptide variations may have different mechanisms of action against multidrug-resistant bacterial pathogens [J]. J. Antimicrob. Chemother., 2021, 76: 1174
doi: 10.1093/jac/dkaa560 pmid: 33501992
13 Mishra B, Basu A, Chua R R Y, et al. Site specific immobilization of a potent antimicrobial peptide onto silicone catheters: evaluation against urinary tract infection pathogens [J]. J. Mater. Chem., 2014, 2B: 1706
14 Gultekinoglu M, Sarisozen Y T, Erdogdu C, et al. Designing of dynamic polyethyleneimine (PEI) brushes on polyurethane (PU) ureteral stents to prevent infections [J]. Acta Biomater., 2015, 21: 44
doi: 10.1016/j.actbio.2015.03.037 pmid: 25848724
15 Leigh B L, Cheng E, Xu L J, et al. Antifouling photograftable zwitterionic coatings on PDMS substrates [J]. Langmuir, 2019, 35: 1100
doi: 10.1021/acs.langmuir.8b00838 pmid: 29983076
16 Wang Y X, Sun Y L, Gu Y H, et al. Articular cartilage-inspired surface functionalization for enhanced lubrication [J]. Adv. Mater. Interfaces, 2019, 6:1900180
doi: 10.1002/admi.201900180
17 Ren L, Xu L, Feng J W, et al. In vitro study of role of trace amount of Cu release from Cu-bearing stainless steel targeting for reduction of in-stent restenosis [J]. J. Mater. Sci. Mater. Med., 2012, 23: 1235
doi: 10.1007/s10856-012-4584-8
18 Ren L, Xu X H, Liu H, et al. Biocompatibility and Cu ions release kinetics of copper-bearing titanium alloys [J]. J. Mater. Sci. Technol., 2021, 95: 237
doi: 10.1016/j.jmst.2021.03.074
19 Jin S J, Qi X, Wang T M, et al. In vitro study of stimulation effect on endothelialization by a copper bearing cobalt alloy [J]. J. Biomed. Mater. Res., 2018, 106A: 561
20 Zhao J, Ren L, Zhang B C, et al. In vitro study on infectious ureteral encrustation resistance of Cu-bearing stainless steel [J]. J. Mater. Sci. Technol., 2017, 33: 1604
doi: 10.1016/j.jmst.2017.03.025
21 Zhao J, Cao Z Q, Lin H, et al. In vivo research on Cu-bearing ureteral stent [J]. J. Mater. Sci. Mater. Med., 2019, 30: 83
doi: 10.1007/s10856-019-6285-z
22 Jin Y Y, Zhu Z Q, Liang L, et al. A facile heparin/carboxymethyl chitosan coating mediated by polydopamine on implants for hemocompatibility and antibacterial properties [J]. Appl. Surf. Sci., 2020, 528: 146539
doi: 10.1016/j.apsusc.2020.146539
23 Haddad L. Synthetic urine and method of making same[P]. US Pat, 7109035, 2006
24 Shen F Y. Construction of copper mediated in situ nitric oxide-generating coating for cardiovascular interventional devices [D]. Chengdu: Southwest Jiaotong University, 2016
申芳瑜. 用于血管介入器械表面改性的铜介导原位催化产生一氧化氮涂层的构建 [D]. 成都: 西南交通大学, 2016
25 Xu C H, Tian M, Liu L, et al. Fabrication and properties of silverized glass fiber by dopamine functionalization and electroless plating [J]. J. Electrochem. Soc., 2012, 159: D217
doi: 10.1149/2.056204jes
26 Wang L R, Guan H Y, Chen S S, et al. Preparation and antibacterial function of an Cu-bearing chitosan coating on silicone rubber surface [J]. Chin. J. Mater. Res., 2020, 34: 575
doi: 10.11901/1005.3093.2020.047
王立蓉, 关宏宇, 陈姗姗 等. 硅橡胶表面壳聚糖载铜凝胶涂层的制备及其抗菌功能 [J]. 材料研究学报, 2020, 34: 575
doi: 10.11901/1005.3093.2020.047
27 Shao H. Construction of multilyered composites from poly (dopamine) modified carbon nanotubes and the interactions with cells [D]. Guangzhou: Jinan University, 2017
邵 晗. 聚多巴胺修饰碳纳米管静电叠层复合膜的制备及细胞作用研究 [D]. 广州: 暨南大学, 2017
28 Nandakumar R, Santo C E, Madayiputhiya N, et al. Quantitative proteomic profiling of the Escherichia coli response to metallic copper surfaces [J]. Biometals, 2011, 24: 429
doi: 10.1007/s10534-011-9434-5 pmid: 21384090
29 Zanzen U, Bovenkamp-Langlois L, Klysubun W, et al. The interaction of copper ions with Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli: an X-ray absorption near-edge structure (XANES) spectroscopy study [J]. Arch. Microbiol., 2018, 200: 401
doi: 10.1007/s00203-017-1454-2
30 Iribarnegaray V, Navarro N, Robino L, et al. Magnesium-doped zinc oxide nanoparticles alter biofilm formation of Proteus mirabilis [J]. Nanomedicine, 2019, 14: 1551
doi: 10.2217/nnm-2018-0420
31 Multanen M, Talja M, Hallanvuo S, et al. Bacterial adherence to silver nitrate coated poly-L-lactic acid urological stents in vitro [J]. Urol. Res., 2000, 28: 327
pmid: 11127712
32 Milo S, Hathaway H, Nzakizwanayo J, et al. Prevention of encrustation and blockage of urinary catheters by Proteus mirabilis via pH-triggered release of bacteriophage [J]. J. Mater. Chem., 2017, 5B: 5403
33 Donlan R M, Costerton J W. Biofilms: survival mechanisms of clinically relevant microorganisms [J]. Clin. Microbiol. Rev., 2002, 15: 167
doi: 10.1128/CMR.15.2.167-193.2002 pmid: 11932229
34 Stickler D J, Jones G L, Russell A D, et al. Control of encrustation and blockage of Foley catheters [J]. Lancet, 2003, 361: 1435
pmid: 12727400
[1] LU Yimin, MA Lifang, WANG Hai, XI Lin, XU Manman, YANG Chunlai. Carbon-base Protective Coating Grown by Pulsed Laser Deposition on Copper Substrate[J]. 材料研究学报, 2023, 37(9): 706-712.
[2] WANG Qian, PU Lei, JIA Caixia, LI Zhixin, LI Jun. Inhomogeneity of Interface Modification of Carbon Fiber/Epoxy Composites[J]. 材料研究学报, 2023, 37(9): 668-674.
[3] FENG Ye, CHEN Zhiyong, JIANG Sumeng, GONG Jun, SHAN Yiyin, LIU Jianrong, WANG Qingjiang. Effect of a NiCrAlSiY Coating on Cyclic Oxidation and Room Temperature Tensile Properties of Ti65 Alloy Plate[J]. 材料研究学报, 2023, 37(7): 523-534.
[4] CHEN Kaiwang, ZHANG Penglin, LI Shuwang, NIU Xianming, HU Chunlian. High-temperature Tribological Properties for Plasma Spraying Coating of Ni-P Plated Mullite Powders[J]. 材料研究学报, 2023, 37(1): 39-46.
[5] SHAN Weiyao, WANG Yongli, LI Jing, XIONG Liangyin, DU Xiaoming, LIU Shi. High Temperature Oxidation Resistance of Cr Based Coating on Zirconium Alloy[J]. 材料研究学报, 2022, 36(9): 699-705.
[6] ZHANG Hongliang, ZHAO Guoqing, OU Junfei, Amirfazli Alidad. Superhydrophobic Cotton Fabric Based on Polydopamine via Simple One-Pot Immersion for Oil Water Separation[J]. 材料研究学报, 2022, 36(2): 114-122.
[7] CUI Li, SUN Lili, GUO Peng, MA Xin, WANG Shuyuan, WANG Aiying. Effect of Deposition Time on Structure and Performance of Diamond-like Carbon Films on PEEK[J]. 材料研究学报, 2022, 36(11): 801-810.
[8] LI Rui, WANG Hao, ZHANG Tiangang, NIU Wei. Microstructure and Properties of Laser Clad Ti2Ni+TiC+Al2O3+CrxSy Composite Coating on Ti811 Alloy[J]. 材料研究学报, 2022, 36(1): 62-72.
[9] LI Xiuxian, QIU Wanqi, JIAO Dongling, ZHONG Xichun, LIU Zhongwu. Promotion Effect of α-Al2O3 Seeds on Low-temperature Deposition of α-Al2O3 Films by Reactive Sputtering[J]. 材料研究学报, 2022, 36(1): 8-12.
[10] FAN Jinhui, LI Pengfei, LIANG Xiaojun, LIANG Jiangping, XU Changzheng, JIANG Li, YE Xiangxi, LI Zhijun. Interface Evolution During Rolling of Ni-clad Stainless Steel Plate[J]. 材料研究学报, 2021, 35(7): 493-500.
[11] ZHANG Huichen, QI Xuelian. Super Low Friction Characteristics Initiated by Running-in Process in Water-based Lubricant for Ti-Alloy[J]. 材料研究学报, 2021, 35(5): 349-356.
[12] LIU Fuguang, CHEN Shengjun, PAN Honggen, DONG Peng, MA Yingmin, HUANG Jie, YANG Erjuan, MI Zihao, WANG Yansong, LUO Xiaotao. Thermally Sprayed Thermal Barrier Coating of MCrAlY/8YSZ with Hybrid Microstructure and Its Spallation Resistance[J]. 材料研究学报, 2021, 35(4): 313-320.
[13] TANG Changbin, NIU Hao, HUANG Ping, WANG Fei, ZHANG Yujie, XUE Juanqin. Electrosorption Characteristics of NF/PDMA /MnO2-Co Capacitor Electrode for Pb2+ in a Dilute Solution of Lead Ions[J]. 材料研究学报, 2021, 35(2): 115-127.
[14] SU Chenwen, ZHANG Tingyue, GUO Liwei, LI Le, YANG Ping, LIU Yanqiu. Preparation of Thiol-ene Hydrogels for Extracellular Matrix Simulation[J]. 材料研究学报, 2021, 35(12): 903-910.
[15] XU Wencui, LIN Yingzheng, SHAO Zaidong, ZHENG Yuming, CHENG Xuan, ZHONG Lubin. Facile Preparation of Electrospun Carbon Nanofiber Aerogels for Oils Absorption[J]. 材料研究学报, 2021, 35(11): 820-826.
No Suggested Reading articles found!