Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (2): 114-122    DOI: 10.11901/1005.3093.2021.103
ARTICLES Current Issue | Archive | Adv Search |
Superhydrophobic Cotton Fabric Based on Polydopamine via Simple One-Pot Immersion for Oil Water Separation
ZHANG Hongliang, ZHAO Guoqing, OU Junfei(), Amirfazli Alidad
School of Materials Engineering, Jiangsu University of Technology, Changzhou 213000, China
Cite this article: 

ZHANG Hongliang, ZHAO Guoqing, OU Junfei, Amirfazli Alidad. Superhydrophobic Cotton Fabric Based on Polydopamine via Simple One-Pot Immersion for Oil Water Separation. Chinese Journal of Materials Research, 2022, 36(2): 114-122.

Download:  HTML  PDF(11536KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Superhydrophobic fabric was fabricated by dipping the cotton fabric into ethanol solution of dopamine, silver nitrate and hexdecyltrimethoxysilane followed by bakingdry, and of which the surface morphology and chemical composition were characterized by scanning electron microscope and x-ray photoelectron spectroscope, respectively. Surface wettability was measured by contact angle meter. Durability was assessed by abrasion or immersion in different aqueous solutions of acid, alkali, or boiling water. Results show that the in-situ-generated Ag particles were retained after abrasion or immersion test due to the high adhesion of polydopamine; thus, the so-obtained superhydrophobic fabric possessed good durability. Moreover, the superhydrophobic fabric showed good oil-water separation performance with oil-water separation efficiency up to 97% and oil flow up to 15.93 m3·m-2·h-1.

Key words:  surface and interface in the materials      lotus effect      mussel effect      durability      wastewater treatment     
Received:  19 January 2021     
ZTFLH:  O631  
Fund: National Natural Science Foundation of China(52073127);Changzhou Science & Technology Program (Nos. CM20193004 & CZ20190020)
About author:  OU Junfei, Tel: (0519)86953280, E-mail: oujunfei_1982@163.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.103     OR     https://www.cjmr.org/EN/Y2022/V36/I2/114

Soluten=1n=2n=3n=4n=5
DA2.04.06.08.010.0
AgNO31.63.24.86.48.0
Table 1  Concentration of dopamine (DA) and AgNO3 for the TF-nC-mC sample (mg·mL-1)
Fig.1  Preparation schematic (a), SEM images for original cotton fabric (b) and (c) change of the TF-nC-mC samples with different values of concentration parameter n (m=5) and (d) immersion cycle m (n=3)
TF-nC-5CTF-3C-mC
Contact angle/(°)Sliding angle/(°)Contact angle/(°)Sliding angle/(°)
n=1153.8±1.715±1.6--
n=2159.2±1.89±1.1--
n=3161.3±1.95±1.8--
n=4159.7±1.68±1.2--
n=5150.1±1.812±1.3--
m=1--0-
m=2--144.8±1.523±1.6
m=3--160.3±1.96±1.8
m=4--160.8±1.46±1.3
m=5--161.2±1.35±1.4
Table 2  Surface wettability for the TF-nC-mC sample with different concentration parameter n and immersion cycle m
Fig.2  XPS spectra of different samples (a) survey spectrum of theTF-3C-5C sample, (b) Ag3d high resolution spectrum of theTF-3C-5C sample, (c) C1s high resolution spectrum of the pristine fabric and (d) C1s high resolution spectrum of the TF-3C-5C sample
Fig.3  Variation of surface morphology after (a) ultrasonicating, (b) laundering, (c) water boiling, (d) alkali, (e) acid, (f) abrading testing
TestingCA/(°)ΔE*abN% (4.56)&Ag% (1.12)&Si% (5.35)&
Ultrasonicating for 5 h151.2±1.517.83.510.983.62
Laundering for 30 cycles149.1±1.117.43.810.434.96
Water boiling for 72 h149.8±1.315.44.280.844.41
Alkali soaking for 72 h150.9±0.917.63.951.064.28
Acid soaking for 168 h148.7±1.215.34.361.034.82
Abrading for 200 cycles132.6±1.214.74.040.823.62
Table 3  Variation of surface morphology, surface wettability, and surface chemistry after testing
Fig.4  Variation of surface wettability for theTF-3C-5C sample against ultrasonication time (a), laundering cycles (b), water boiling time (c), alkali treating time (d), acid treating time (e), abrading cycles (f)
SF-3C-5CComparisonSamples in referenceRef.
Ultrasonic cleaningCA=157.2° and SA=9° after 1 h in ethanol>CA varied from 159° to 150° after 1 h in ethanol[22]
<CA varied from 154° to 152° after 24 h in acetone[23]
LaunderingCA=152° and SA=18° after 25 cycles>CA varied from 157° to 147° after 20 cycles[20]
<CA varied from 152° to ca. 150° after 100 cycles[24]
Water BoilingCA=152.2° and SA=18° after 48 h>CA varied to ca. 150° and SA increased to 15° after 35 min[25]
Alkali SoakingCA=153.2° and SA=14° after 48 h>CA varied from 156.3° to 152.2° after 48 h[20]
CA varied from 156.9° to 151.6° after 48 h[26]
Acid SoakingCA>157.7° and SA=6° after 48 h>

CA varied from 154.7° to 150.6° after 12 h

CA varied from 156.9° to 142.3° after 24 h

CA varied from 156.3° to 152.5° after 48 h

[27]

[26]

[20]

AbradingCA=132.6° and SA<30° after 200 cycles<CA and SA remained almost unchanged after 200 cycles[28]
Table 4  Wettability variation for the TF-3C-5C sample and control samples in references
Fig.5  Selective absorption of superhydrophobic cotton for cyclohexane (dyed with oil red ) in water (a) and trichloromethane (dyed with oil red ) in water (b)
Fig.6  Oil/water separation with the superhydrophobic filtration membrane of TF-3C-5C (a) setup, (b) separation efficiency for different oil/water mixtures, (c) flux of different oils penetrating through the superhydrophobic fabric, (d) variation of separation efficiency against separation cycle and (e) oil water emulsion separation
1 Ge M Z , Cao C Y , Huang J Y , et al . Rational design of materials interface at nanoscale towards intelligent oil-water separation [J]. Nanoscale Horiz., 2018, 3: 235
2 Li J , Kang R M , Tang X H , et al . Superhydrophobic meshes that can repel hot water and strong corrosive liquids used for efficient gravity-driven oil/water separation [J]. Nanoscale, 2016, 8: 7638
3 Karaman M , Çabuk N , Özyurt D , et al . Self-supporting superhydrophobic thin polymer sheets that mimic the nature's petal effect [J]. Appl. Surf. Sci., 2012, 259: 542
4 Li X B , Xu H X , Liu J T , et al . Cyclonic state micro-bubble flotation column in oil-in-water emulsion separation [J]. Sep. Purif. Technol., 2016, 165: 101
5 Zheng Y M , Gao X F , Jiang L . Directional adhesion of superhydrophobic butterfly wings [J]. Soft Matter, 2007, 3: 178
6 Crick C R , Gibbins J A , Parkin I P . Superhydrophobic polymer-coated copper-mesh; membranes for highly efficient oil-water separation [J]. J. Mater. Chem., 2013, 1A: 5943
7 Su X J , Li H Q , Lai X J , et al . Polydimethylsiloxane-based superhydrophobic surfaces on steel substrate: fabrication, reversibly extreme wettability and oil-water separation [J]. ACS Appl. Mater. Interfaces, 2017, 9: 3131
8 Tudu B K , Kumar A . Robust and durable superhydrophobic steel and copper meshes for separation of oil-water emulsions [J]. Prog. Org. Coat., 2019, 133: 316
9 Cao H J , Gu W H , Fu J Y , et al . Preparation of superhydrophobic/oleophilic copper mesh for oil-water separation [J]. Appl. Surf. Sci., 2017, 419: 599
10 Liu Y , Zhang K T , Yao W G , et al . Bioinspired structured superhydrophobic and superoleophilic stainless steel mesh for efficient oil-water separation [J]. ColloidsSurf., 2016,500A: 54
11 Wang Q , Yu M G , Chen G X , et al . Robust fabrication of fluorine-free superhydrophobic steel mesh for efficient oil/water separation [J]. J. Mater. Sci., 2016, 52: 2549
12 Mi H Y , Li H , Jing X , et al . Robust superhydrophobicfluorinated fibrous silica sponge with fire retardancy for selective oil absorption in harsh environment [J]. Sep. Purif. Technol., 2020, 241: 116700
13 Jiang B , Chen Z X , Sun Y L , et al . Fabrication of superhydrophobic cotton fabrics using crosslinking polymerization method [J]. Appl. Surf. Sci., 2018, 441: 554
14 Lee H , Dellatore S M , Miller W M , et al . Mussel-inspired surface chemistry for multifunctional coatings [J]. Science, 2007, 318: 426
15 Zhai C P , Sun F , Zhang P , et al . Interactions of dopamine and dopamine hydrochloride with ethanol [J]. J. Mol.Liq., 2016, 223: 420
16 Xu C L , Shan Y P , Bilal M , et al . Copper ions chelated mesoporous silica nanoparticles via dopamine chemistry for controlled pesticide release regulated by coordination bonding [J]. Chem. Eng. J., 2020, 395: 125093
17 Wang H X , Zhou H , Liu S , et al . Durable, self-healing, superhydrophobic fabrics from fluorine-free, waterborne, polydopamine/alkyl silane coatings [J]. RSC Adv., 2017, 7: 33986
18 Yan X J , Zhu X W , Ruan Y T , et al . Biomimetic, dopamine-modified superhydrophobic cotton fabric for oil–water separation [J]. Cellulose, 2020, 27: 7873
19 Zimmermann J , Seeger S , Reifler F A . Water shedding angle: a new technique to evaluate the water-repellent properties of superhydrophobic surfaces [J]. Text. Res. J., 2009, 79: 1565
20 Wenzel R N . Resistance of solid surfaces to wetting by water [J]. Ind. Eng. Chem., 1936, 28: 988
21 Wu Z K . Anti-galvanic reduction of thiolate-protected gold and silver nanoparticles [J]. Angew. Chem. Inti. Ed., 2012, 124: 2988
22 Cassie A B D , Baxter S . Wettability of porous surfaces [J]. Trans. FaradaySoc., 1944, 40: 546
23 Qian B T , Shen Z Q . Fabrication of superhydrophobic surfaces by dislocation-selective chemical etching on aluminum, copper, and zinc substrates [J]. Langmuir, 2005, 21: 9007
24 Yang S , Yin K , Wu J R , et al . Ultrafast nano-structuring of superwetting Ti foam with robust antifouling and stability towards efficient oil-in-water emulsion separation [J]. Nanoscale, 2019, 11: 17607
25 Li Y , Li L , Sun J Q . Bioinspired self-healing superhydrophobic coatings [J]. Angew. Chem. Int. Ed., 2010, 49: 6129
26 Wen G , Guo Z G , Liu W M . Biomimetic polymeric superhydrophobic surfaces and nanostructures: from fabrication to applications [J]. Nanoscale, 2017, 9: 3338
27 Yang Y Y , Huang W , Guo Z P , et al . Robust fluorine-free colorful superhydrophobic PDMS/NH2-MIL-125(Ti)@cotton fabrics for improved ultraviolet resistance and efficient oil-water separation [J]. Cellulose, 2019, 26: 9335-9348
28 Ou J F , Ma J , Wang F J , et al . Unexpected superhydrophobic polydopamine on cotton fabric [J]. Prog. Org. Coat., 2020, 147: 105777
29 Yao H J , Lu X , Xin Z , et al . A durable bio-based polybenzoxazine/SiO2 modified fabric with superhydrophobicity and superoleophilicity for oil/water separation [J]. Sep. Purif. Technol.,2019, 229: 115792
30 Zheng L Z , Su X J , Lai X J , et al . Conductive superhydrophobic cotton fabrics via layer-by-layer assembly of carbon nanotubes for oil-water separation and human motion detection [J]. Mater. Lett., 2019, 253: 230
[1] WANG Qian, PU Lei, JIA Caixia, LI Zhixin, LI Jun. Inhomogeneity of Interface Modification of Carbon Fiber/Epoxy Composites[J]. 材料研究学报, 2023, 37(9): 668-674.
[2] LU Yimin, MA Lifang, WANG Hai, XI Lin, XU Manman, YANG Chunlai. Carbon-base Protective Coating Grown by Pulsed Laser Deposition on Copper Substrate[J]. 材料研究学报, 2023, 37(9): 706-712.
[3] FENG Ye, CHEN Zhiyong, JIANG Sumeng, GONG Jun, SHAN Yiyin, LIU Jianrong, WANG Qingjiang. Effect of a NiCrAlSiY Coating on Cyclic Oxidation and Room Temperature Tensile Properties of Ti65 Alloy Plate[J]. 材料研究学报, 2023, 37(7): 523-534.
[4] CHEN Kaiwang, ZHANG Penglin, LI Shuwang, NIU Xianming, HU Chunlian. High-temperature Tribological Properties for Plasma Spraying Coating of Ni-P Plated Mullite Powders[J]. 材料研究学报, 2023, 37(1): 39-46.
[5] SHAN Weiyao, WANG Yongli, LI Jing, XIONG Liangyin, DU Xiaoming, LIU Shi. High Temperature Oxidation Resistance of Cr Based Coating on Zirconium Alloy[J]. 材料研究学报, 2022, 36(9): 699-705.
[6] CUI Li, SUN Lili, GUO Peng, MA Xin, WANG Shuyuan, WANG Aiying. Effect of Deposition Time on Structure and Performance of Diamond-like Carbon Films on PEEK[J]. 材料研究学报, 2022, 36(11): 801-810.
[7] LI Jianzhong, ZHU Boxuan, WANG Zhenyu, ZHAO Jing, FAN Lianhui, YANG Ke. Preparation and Properties of Copper-carrying Polydopamine Coating on Ureteral Stent[J]. 材料研究学报, 2022, 36(10): 721-729.
[8] LI Rui, WANG Hao, ZHANG Tiangang, NIU Wei. Microstructure and Properties of Laser Clad Ti2Ni+TiC+Al2O3+CrxSy Composite Coating on Ti811 Alloy[J]. 材料研究学报, 2022, 36(1): 62-72.
[9] LI Xiuxian, QIU Wanqi, JIAO Dongling, ZHONG Xichun, LIU Zhongwu. Promotion Effect of α-Al2O3 Seeds on Low-temperature Deposition of α-Al2O3 Films by Reactive Sputtering[J]. 材料研究学报, 2022, 36(1): 8-12.
[10] FAN Jinhui, LI Pengfei, LIANG Xiaojun, LIANG Jiangping, XU Changzheng, JIANG Li, YE Xiangxi, LI Zhijun. Interface Evolution During Rolling of Ni-clad Stainless Steel Plate[J]. 材料研究学报, 2021, 35(7): 493-500.
[11] ZHANG Huichen, QI Xuelian. Super Low Friction Characteristics Initiated by Running-in Process in Water-based Lubricant for Ti-Alloy[J]. 材料研究学报, 2021, 35(5): 349-356.
[12] LIU Fuguang, CHEN Shengjun, PAN Honggen, DONG Peng, MA Yingmin, HUANG Jie, YANG Erjuan, MI Zihao, WANG Yansong, LUO Xiaotao. Thermally Sprayed Thermal Barrier Coating of MCrAlY/8YSZ with Hybrid Microstructure and Its Spallation Resistance[J]. 材料研究学报, 2021, 35(4): 313-320.
[13] TANG Changbin, NIU Hao, HUANG Ping, WANG Fei, ZHANG Yujie, XUE Juanqin. Electrosorption Characteristics of NF/PDMA /MnO2-Co Capacitor Electrode for Pb2+ in a Dilute Solution of Lead Ions[J]. 材料研究学报, 2021, 35(2): 115-127.
[14] XU Wencui, LIN Yingzheng, SHAO Zaidong, ZHENG Yuming, CHENG Xuan, ZHONG Lubin. Facile Preparation of Electrospun Carbon Nanofiber Aerogels for Oils Absorption[J]. 材料研究学报, 2021, 35(11): 820-826.
[15] PENG Haoping, XI Shiheng, CUI Derong, LIU Ya, DENG Song, SU Xuping, RUAN Ruiwen. Effect of Mn on Wetting Behavior of X80 Steel in Molten Zn-Mn Alloy[J]. 材料研究学报, 2021, 35(10): 785-794.
No Suggested Reading articles found!