|
|
Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel |
LIU Jihao1,2, CHI Hongxiao1(), WU Huibin2, MA Dangshen1, ZHOU Jian1, XU Huixia3 |
1.Institute for Special Steels, Center Iron and Steel Research Institute Co., Beijing 100081, China 2.Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083, China 3.Tiangong Aihe Special Steel Co. Ltd., Danyang 212312, China |
|
Cite this article:
LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel. Chinese Journal of Materials Research, 2023, 37(8): 625-632.
|
Abstract Spray forming is a casting process, by which the molten metal is directly converted to a solid bulk with unique characteristics. When used in the production of high speed steel, spray forming materials typically present microstructures composed of refined polygonal grains, uniformly distributed carbides and low levels of micro and macro-segregation. The mechanical properties of the spray forming high speed steel are usually between ones made by powder metallurgy, casting and wrought. It can be considered as a cost saving alternative for large-scale industrial production of high-speed steels. But for high-speed steel produced by spray forming, its shortcomings can't be ignored: i.e. once being subjected to the same heat treatment, compared with the steels made by PM and CW process, the spray forming one often shows lower hardness. Focusing on the solution of aforementioned disadvantages, the effect of different heat treatments on the microstructural evolution and hardness variation was assessed for the spray forming M3 high-speed steel, and the adopted heat treatment involved quenching and tempering at different temperatures separately. Meanwhile the reasons for the low hardness of the spray-formed M3 high-speed steel were also discussed. The results show that SF M3 high speed steel quenched below 1230℃ can still ensure relatively fine grain size and uniform size distribution of carbide particles; Setting the tempering at 560℃, in case the quenching temperature raises from 1200℃ to 1230℃, after being quenched + tempered, the hardness of spray-formed M3 high-speed steel can be greatly improved. It is believed that the low hardness issue may be ascribed to the fact: the formation of a large number of MC type carbides with inhomogeneous composition in the spray forming atomization stage, the MC type carbides can't be fully dissolved in the steel matrix when quenching at lower temperature during the heat treatment process, resulting in insufficient amount of carbon and alloying elements in the matrix. Therefore, the low hardness issue is caused by the inability to fully exert the secondary hardening effect.
|
Received: 09 September 2022
|
|
Corresponding Authors:
CHI Hongxiao, Tel: (010)62182268, E-mail:chihongxiao@163.com
|
1 |
Fischmeister H F, Riedl R, Karagöz S. Solidification of high-speed tool steels [J]. Metall. Trans., 1989, 20A: 2133
|
2 |
Wei S Z, Xu L J. Review on research progress of steel and iron wear-resistant materials [J]. Acta Metall. Sin., 2020, 56: 523
doi: 10.11900/0412.1961.2019.00370
|
|
魏世忠, 徐流杰. 钢铁耐磨材料研究进展 [J]. 金属学报, 2020, 56: 523
doi: 10.11900/0412.1961.2019.00370
|
3 |
Zhou X F, Fang F, Tu Y Y, et al. Effect of aluminum on the solidification microstructure of M2 high speed steel [J]. Acta Metall. Sin., 2014, 50: 769
doi: 10.3724/SP.J.1037.2013.00621
|
|
周雪峰, 方 峰, 涂益友 等. Al对M2高速钢凝固组织的影响 [J]. 金属学报, 2014, 50: 769
doi: 10.3724/SP.J.1037.2013.00621
|
4 |
Feng M J, Wang E G, Zhang X W, et al. High speed steel composite roll manufactured by electromagnetism continuous casting [J]. Rare Met. Mater. Eng., 2012, 41: 1487
|
|
冯明杰, 王恩刚, 张兴武 等. 电磁连续铸造法制备高速钢复合轧辊 [J]. 稀有金属材料与工程, 2012, 41: 1487
|
5 |
Luo Y W, Guo H J, Sun X L. Precipitation behaviors of carbides in M42 high speed steel during ESR and forging [J]. Iron Steel, 2017, 52: 68
|
|
罗乙娲, 郭汉杰, 孙晓林. M42高速钢电渣重熔及锻造退火后碳化物的析出 [J]. 钢铁, 2017, 52: 68
|
6 |
Sun H X, Chen C G, Zhang Z W, et al. PM high speed steel with high performance manufactured by super-fine powder with low oxygen content [J]. Rare Met. Mater. Eng., 2019, 48(10): 3246
|
|
孙海霞, 陈存广, 张振威 等. 低氧超细粉末制备高性能粉末高速钢 [J]. 稀有金属材料与工程, 2019, 48(10): 3246
|
7 |
Cui C S, Zhang J G. Research progress of spray forming technology for the manufacture of high performance iron and steel materials (I) principle, characteristics and development status [J]. Shanghai Met., 2012, 34: 42
|
|
崔成松, 章靖国. 喷射成形快速凝固技术制备高性能钢铁材料的研究进展(一)——喷射成形技术的原理、特点及发展现状 [J]. 上海金属, 2012, 34: 42
|
8 |
Zepon G, Ellendt N, Uhlenwinkel V, et al. Solidification sequence of spray-formed steels [J]. Metall. Mater. Trans., 2016, 47A: 842
|
9 |
Mesquita R A, Barbosa C A. Spray forming high speed steel—properties and processing [J]. Mater. Sci. Eng., 2004, 383A: 87
|
10 |
Ernst I C, Duh D. ESP4 and TSP4, A comparison of spray formed with powdermetallurgically produced cobalt free high-speed steel of type 6W-5Mo-4V-4Cr [J]. J. Mater. Sci., 2004, 39: 6831
doi: 10.1023/B:JMSC.0000045613.54700.35
|
11 |
Wang H B, Hou L G, Zhang J X, et al. Microstructures and properties of spray formed Nb-containing M3 high speed steel [J]. Acta Metall. Sin., 2014, 50: 1421
doi: 10.11900/0412.1961.2014.00216
|
|
王和斌, 侯陇刚, 张金祥 等. 喷射成形含铌M3型高速钢组织与性能研究 [J]. 金属学报, 2014, 50: 1421
doi: 10.11900/0412.1961.2014.00216
|
12 |
Zhao S L. Research of microstructure and properties of spray formed high alloyed high speed steel [D]. Shanghai: Shanghai University, 2007
|
|
赵顺利. 喷射成形高合金高速钢的组织与性能研究 [D]. 上海: 上海大学, 2017
|
13 |
Liu B W. Optimization of alloy composition and properties of high speed steel fabricated by powder metallurgy [D]. Beijing: University of Science & Technology Beijing, 2020
|
|
刘博文. 粉末冶金高速钢合金成分及性能优化 [D]. 北京: 北京科技大学, 2020
|
14 |
Zhou X F, Liu D, Zhu W L, et al. Morphology, microstructure and decomposition behavior of M2C carbides in high speed steel [J]. J. Iron Steel Res. Int., 2017, 24: 43
doi: 10.1016/S1006-706X(17)30007-9
|
15 |
Ding P D, Shi G Q, Zhou S Z. As-cast carbides in high-speed steels [J]. Metall. Mater. Trans., 1993, 24A: 1265
|
16 |
Chi H X, Ma D S, Xu H X, et al. Effect of solidification rate on as-cast microstructure of M2 high speed steel [J]. Trans. Mater. Heat Treat., 2017, 38: 94
|
|
迟宏宵, 马党参, 徐辉霞 等. 凝固速率对M2高速工具钢铸态组织的影响 [J]. 材料热处理学报, 2017, 38: 94
|
17 |
Zhou X F, Fang F, Jiang J Q, et al. Study on decomposition behaviour of M2C eutectic carbide in high speed steel [J]. Mater. Sci. Technol., 2012, 28: 1499
doi: 10.1179/1743284712Y.0000000081
|
18 |
Veerababu R, Satya Prasad K, Karamched P S, et al. Austenite stability and M2C carbide decomposition in experimental secondary hardening ultra-high strength steels during high temperature austenitizing treatments [J]. Mater. Charact., 2018, 144: 191
doi: 10.1016/j.matchar.2018.07.013
|
19 |
Zhou X F, Fang F, Jiang J Q, et al. Refining carbide dimensions in AISI M2 high speed steel by increasing solidification rates and spheroidising heat treatment [J]. Mater. Sci. Technol., 2014, 30: 116
doi: 10.1179/1743284713Y.0000000338
|
20 |
Li Y J, Jiang Q C, Zhao Y G, et al. A dynamic study on the spheroidizing of eutectic carbide in the modified M2 steel [J]. Acta Metall. Sin., 1999, 35: 207
|
|
李彦军, 姜启川, 赵宇光 等. 变质M2高速钢中共晶碳化物加热团球化的动力学研究 [J]. 金属学报, 1999, 35: 207
|
21 |
Zhang Q K, Jiang Y, Shen W J, et al. Direct fabrication of high-performance high speed steel products enhanced by LaB6 [J]. Mater. Des., 2016, 112: 469
doi: 10.1016/j.matdes.2016.09.044
|
22 |
Godec M, Batič B Š, Mandrino D, et al. Characterization of the carbides and the martensite phase in powder-metallurgy high-speed steel [J]. Mater. Charact., 2010, 61: 452
doi: 10.1016/j.matchar.2010.02.003
|
23 |
Mesquita R A, Barbosa C A. High-speed steels produced by conventional casting, spray forming and powder metallurgy [J]. Mater. Sci. Forum, 2005, 498-499: 244
doi: 10.4028/www.scientific.net/MSF.498-499
|
24 |
Lee E S, Park W J, Jung J Y, et al. Solidification microstructure and M2C carbide decomposition in a spray-formed high-speed steel [J]. Metall. Mater. Trans. A, 1998, 29: 1395
doi: 10.1007/s11661-998-0354-0
|
25 |
Fischmeister H F, Karagöz S, Andrén H O. An atom probe study of secondary hardening in high speed steels [J]. Acta Metall., 1988, 36: 817
doi: 10.1016/0001-6160(88)90136-8
|
26 |
Moon H K, Lee K B, Kwon H. Influences of Co addition and austenitizing temperature on secondary hardening and impact fracture behavior in P/M high speed steels of W-Mo-Cr-V(-Co) system [J]. Mater. Sci. Eng., 2008, 474A: 328
|
27 |
Lee E S, Park W J, Baik K H, et al. Different carbide types and their effect on bend properties of a spray-formed high speed steel [J]. Scr. Mater., 1998, 39: 1133
doi: 10.1016/S1359-6462(98)00270-X
|
28 |
Kumar K S, Lawley A, Koczak M J. Powder metallurgy T15 tool steel: Part I. Characterization of powder and hot isostatically pressed material [J]. Metall. Trans., 1991, 22A: 2733
|
29 |
Hu B F, Li H Y, Zhang S H, et al. Stabilization of non-equilibrium carbides in powder superalloy Rene 95 [J]. Acta Metall. Sin., 1991, 27: 131
|
|
胡本芙, 李慧英, 章守华 等. 粉末高温合金中亚稳碳化物稳定化处理 [J]. 金属学报, 1991, 27: 131
|
30 |
Serna M M, Rossi J L. MC complex carbide in AISI M2 high-speed steel [J]. Mater. Lett., 2009, 63: 691
doi: 10.1016/j.matlet.2008.11.035
|
31 |
Ghomashchi M R. Quantitative microstructural analysis of M2 grade high speed steel during high temperature treatment [J]. Acta Mater., 1998, 46: 5207
doi: 10.1016/S1359-6454(98)00110-4
|
32 |
Yong Q L, Yan S G, Pei H Z, et al. Physical metallurgical data of vanadium in steel [J]. J. Iron Steel Res., 1998, 10: 67
|
|
雍岐龙, 阎生贡, 裴和中 等. 钒在钢中的物理冶金学基础数据 [J]. 钢铁研究学报, 1998, 10: 67
|
33 |
Pan Y, Pi Z Q, Liu B W, et al. Influence of heat treatment on the microstructural evolution and mechanical properties of W6Mo5-Cr4V2Co5Nb (825 K) high speed steel [J]. Mater. Sci. Eng., 2020, 787A: 139480
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|