Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (8): 625-632    DOI: 10.11901/1005.3093.2022.493
ARTICLES Current Issue | Archive | Adv Search |
Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel
LIU Jihao1,2, CHI Hongxiao1(), WU Huibin2, MA Dangshen1, ZHOU Jian1, XU Huixia3
1.Institute for Special Steels, Center Iron and Steel Research Institute Co., Beijing 100081, China
2.Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083, China
3.Tiangong Aihe Special Steel Co. Ltd., Danyang 212312, China
Cite this article: 

LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel. Chinese Journal of Materials Research, 2023, 37(8): 625-632.

Download:  HTML  PDF(13422KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Spray forming is a casting process, by which the molten metal is directly converted to a solid bulk with unique characteristics. When used in the production of high speed steel, spray forming materials typically present microstructures composed of refined polygonal grains, uniformly distributed carbides and low levels of micro and macro-segregation. The mechanical properties of the spray forming high speed steel are usually between ones made by powder metallurgy, casting and wrought. It can be considered as a cost saving alternative for large-scale industrial production of high-speed steels. But for high-speed steel produced by spray forming, its shortcomings can't be ignored: i.e. once being subjected to the same heat treatment, compared with the steels made by PM and CW process, the spray forming one often shows lower hardness. Focusing on the solution of aforementioned disadvantages, the effect of different heat treatments on the microstructural evolution and hardness variation was assessed for the spray forming M3 high-speed steel, and the adopted heat treatment involved quenching and tempering at different temperatures separately. Meanwhile the reasons for the low hardness of the spray-formed M3 high-speed steel were also discussed. The results show that SF M3 high speed steel quenched below 1230℃ can still ensure relatively fine grain size and uniform size distribution of carbide particles; Setting the tempering at 560℃, in case the quenching temperature raises from 1200℃ to 1230℃, after being quenched + tempered, the hardness of spray-formed M3 high-speed steel can be greatly improved. It is believed that the low hardness issue may be ascribed to the fact: the formation of a large number of MC type carbides with inhomogeneous composition in the spray forming atomization stage, the MC type carbides can't be fully dissolved in the steel matrix when quenching at lower temperature during the heat treatment process, resulting in insufficient amount of carbon and alloying elements in the matrix. Therefore, the low hardness issue is caused by the inability to fully exert the secondary hardening effect.

Key words:  metallic materials      spray forming M3 high speed steel      heat treatment      hardness     
Received:  09 September 2022     
ZTFLH:  TG142.7  
Corresponding Authors:  CHI Hongxiao, Tel: (010)62182268, E-mail:chihongxiao@163.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2022.493     OR     https://www.cjmr.org/EN/Y2023/V37/I8/625

Fig.1  Edge microstructure of SF M3 high speed steel (a) OM image; (b) SEM image
Fig.2  XRD spectrum of SF M3 high-speed steel in annealed state
PositionsWMoCrFeV
134.4126.553.4333.062.55
212.9715.145.443.0863.38
339.5826.574.2426.834.98
419.1420.694.614.5051.07
Table 2  EDS analysis results of positions 1~4 in Fig.1b (mass fraction, %)
Fig.3  XRD spectra of SF M3 high-speed steel at different quenching temperatures
Fig.4  Morphology and statistical results of carbide at different quenching temperatures (a) 1150℃; (b) 1180℃; (c) 1230℃; (d) 1250℃; (e) carbide size-number distribution; (f) carbide percentage statistics
Fig.5  EDS surface scanning alloy element distribution and MC type carbide line scanning element distribution (a) mapping; (b) line scanning; (c) element change corresponding to Fig.5b
Fig.6  Hardness change curve of steel heat treated at different quenching and tempering temperatures
Fig. 7  Morphology observation and phase relationship of precipitated phase (a) bright field image;(b) dark field image;(c) SAED patterns;(d) diagram corresponding to (c)
Fig.8  Hardness comparison between SF and CW M3 high speed steel heat treated at different quenching temperatures
Fig.9  Diffusion curves of W, Mo and V alloy elements at different temperatures
1 Fischmeister H F, Riedl R, Karagöz S. Solidification of high-speed tool steels [J]. Metall. Trans., 1989, 20A: 2133
2 Wei S Z, Xu L J. Review on research progress of steel and iron wear-resistant materials [J]. Acta Metall. Sin., 2020, 56: 523
doi: 10.11900/0412.1961.2019.00370
魏世忠, 徐流杰. 钢铁耐磨材料研究进展 [J]. 金属学报, 2020, 56: 523
doi: 10.11900/0412.1961.2019.00370
3 Zhou X F, Fang F, Tu Y Y, et al. Effect of aluminum on the solidification microstructure of M2 high speed steel [J]. Acta Metall. Sin., 2014, 50: 769
doi: 10.3724/SP.J.1037.2013.00621
周雪峰, 方 峰, 涂益友 等. Al对M2高速钢凝固组织的影响 [J]. 金属学报, 2014, 50: 769
doi: 10.3724/SP.J.1037.2013.00621
4 Feng M J, Wang E G, Zhang X W, et al. High speed steel composite roll manufactured by electromagnetism continuous casting [J]. Rare Met. Mater. Eng., 2012, 41: 1487
冯明杰, 王恩刚, 张兴武 等. 电磁连续铸造法制备高速钢复合轧辊 [J]. 稀有金属材料与工程, 2012, 41: 1487
5 Luo Y W, Guo H J, Sun X L. Precipitation behaviors of carbides in M42 high speed steel during ESR and forging [J]. Iron Steel, 2017, 52: 68
罗乙娲, 郭汉杰, 孙晓林. M42高速钢电渣重熔及锻造退火后碳化物的析出 [J]. 钢铁, 2017, 52: 68
6 Sun H X, Chen C G, Zhang Z W, et al. PM high speed steel with high performance manufactured by super-fine powder with low oxygen content [J]. Rare Met. Mater. Eng., 2019, 48(10): 3246
孙海霞, 陈存广, 张振威 等. 低氧超细粉末制备高性能粉末高速钢 [J]. 稀有金属材料与工程, 2019, 48(10): 3246
7 Cui C S, Zhang J G. Research progress of spray forming technology for the manufacture of high performance iron and steel materials (I) principle, characteristics and development status [J]. Shanghai Met., 2012, 34: 42
崔成松, 章靖国. 喷射成形快速凝固技术制备高性能钢铁材料的研究进展(一)——喷射成形技术的原理、特点及发展现状 [J]. 上海金属, 2012, 34: 42
8 Zepon G, Ellendt N, Uhlenwinkel V, et al. Solidification sequence of spray-formed steels [J]. Metall. Mater. Trans., 2016, 47A: 842
9 Mesquita R A, Barbosa C A. Spray forming high speed steel—properties and processing [J]. Mater. Sci. Eng., 2004, 383A: 87
10 Ernst I C, Duh D. ESP4 and TSP4, A comparison of spray formed with powdermetallurgically produced cobalt free high-speed steel of type 6W-5Mo-4V-4Cr [J]. J. Mater. Sci., 2004, 39: 6831
doi: 10.1023/B:JMSC.0000045613.54700.35
11 Wang H B, Hou L G, Zhang J X, et al. Microstructures and properties of spray formed Nb-containing M3 high speed steel [J]. Acta Metall. Sin., 2014, 50: 1421
doi: 10.11900/0412.1961.2014.00216
王和斌, 侯陇刚, 张金祥 等. 喷射成形含铌M3型高速钢组织与性能研究 [J]. 金属学报, 2014, 50: 1421
doi: 10.11900/0412.1961.2014.00216
12 Zhao S L. Research of microstructure and properties of spray formed high alloyed high speed steel [D]. Shanghai: Shanghai University, 2007
赵顺利. 喷射成形高合金高速钢的组织与性能研究 [D]. 上海: 上海大学, 2017
13 Liu B W. Optimization of alloy composition and properties of high speed steel fabricated by powder metallurgy [D]. Beijing: University of Science & Technology Beijing, 2020
刘博文. 粉末冶金高速钢合金成分及性能优化 [D]. 北京: 北京科技大学, 2020
14 Zhou X F, Liu D, Zhu W L, et al. Morphology, microstructure and decomposition behavior of M2C carbides in high speed steel [J]. J. Iron Steel Res. Int., 2017, 24: 43
doi: 10.1016/S1006-706X(17)30007-9
15 Ding P D, Shi G Q, Zhou S Z. As-cast carbides in high-speed steels [J]. Metall. Mater. Trans., 1993, 24A: 1265
16 Chi H X, Ma D S, Xu H X, et al. Effect of solidification rate on as-cast microstructure of M2 high speed steel [J]. Trans. Mater. Heat Treat., 2017, 38: 94
迟宏宵, 马党参, 徐辉霞 等. 凝固速率对M2高速工具钢铸态组织的影响 [J]. 材料热处理学报, 2017, 38: 94
17 Zhou X F, Fang F, Jiang J Q, et al. Study on decomposition behaviour of M2C eutectic carbide in high speed steel [J]. Mater. Sci. Technol., 2012, 28: 1499
doi: 10.1179/1743284712Y.0000000081
18 Veerababu R, Satya Prasad K, Karamched P S, et al. Austenite stability and M2C carbide decomposition in experimental secondary hardening ultra-high strength steels during high temperature austenitizing treatments [J]. Mater. Charact., 2018, 144: 191
doi: 10.1016/j.matchar.2018.07.013
19 Zhou X F, Fang F, Jiang J Q, et al. Refining carbide dimensions in AISI M2 high speed steel by increasing solidification rates and spheroidising heat treatment [J]. Mater. Sci. Technol., 2014, 30: 116
doi: 10.1179/1743284713Y.0000000338
20 Li Y J, Jiang Q C, Zhao Y G, et al. A dynamic study on the spheroidizing of eutectic carbide in the modified M2 steel [J]. Acta Metall. Sin., 1999, 35: 207
李彦军, 姜启川, 赵宇光 等. 变质M2高速钢中共晶碳化物加热团球化的动力学研究 [J]. 金属学报, 1999, 35: 207
21 Zhang Q K, Jiang Y, Shen W J, et al. Direct fabrication of high-performance high speed steel products enhanced by LaB6 [J]. Mater. Des., 2016, 112: 469
doi: 10.1016/j.matdes.2016.09.044
22 Godec M, Batič B Š, Mandrino D, et al. Characterization of the carbides and the martensite phase in powder-metallurgy high-speed steel [J]. Mater. Charact., 2010, 61: 452
doi: 10.1016/j.matchar.2010.02.003
23 Mesquita R A, Barbosa C A. High-speed steels produced by conventional casting, spray forming and powder metallurgy [J]. Mater. Sci. Forum, 2005, 498-499: 244
doi: 10.4028/www.scientific.net/MSF.498-499
24 Lee E S, Park W J, Jung J Y, et al. Solidification microstructure and M2C carbide decomposition in a spray-formed high-speed steel [J]. Metall. Mater. Trans. A, 1998, 29: 1395
doi: 10.1007/s11661-998-0354-0
25 Fischmeister H F, Karagöz S, Andrén H O. An atom probe study of secondary hardening in high speed steels [J]. Acta Metall., 1988, 36: 817
doi: 10.1016/0001-6160(88)90136-8
26 Moon H K, Lee K B, Kwon H. Influences of Co addition and austenitizing temperature on secondary hardening and impact fracture behavior in P/M high speed steels of W-Mo-Cr-V(-Co) system [J]. Mater. Sci. Eng., 2008, 474A: 328
27 Lee E S, Park W J, Baik K H, et al. Different carbide types and their effect on bend properties of a spray-formed high speed steel [J]. Scr. Mater., 1998, 39: 1133
doi: 10.1016/S1359-6462(98)00270-X
28 Kumar K S, Lawley A, Koczak M J. Powder metallurgy T15 tool steel: Part I. Characterization of powder and hot isostatically pressed material [J]. Metall. Trans., 1991, 22A: 2733
29 Hu B F, Li H Y, Zhang S H, et al. Stabilization of non-equilibrium carbides in powder superalloy Rene 95 [J]. Acta Metall. Sin., 1991, 27: 131
胡本芙, 李慧英, 章守华 等. 粉末高温合金中亚稳碳化物稳定化处理 [J]. 金属学报, 1991, 27: 131
30 Serna M M, Rossi J L. MC complex carbide in AISI M2 high-speed steel [J]. Mater. Lett., 2009, 63: 691
doi: 10.1016/j.matlet.2008.11.035
31 Ghomashchi M R. Quantitative microstructural analysis of M2 grade high speed steel during high temperature treatment [J]. Acta Mater., 1998, 46: 5207
doi: 10.1016/S1359-6454(98)00110-4
32 Yong Q L, Yan S G, Pei H Z, et al. Physical metallurgical data of vanadium in steel [J]. J. Iron Steel Res., 1998, 10: 67
雍岐龙, 阎生贡, 裴和中 等. 钒在钢中的物理冶金学基础数据 [J]. 钢铁研究学报, 1998, 10: 67
33 Pan Y, Pi Z Q, Liu B W, et al. Influence of heat treatment on the microstructural evolution and mechanical properties of W6Mo5-Cr4V2Co5Nb (825 K) high speed steel [J]. Mater. Sci. Eng., 2020, 787A: 139480
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[10] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[11] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[12] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[13] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[14] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
[15] SHI Chang, DU Yuhang, LAI Liming, XIAO Siming, GUO Ning, GUO Shengfeng. Mechanical Properties and Oxidation Resistance of a Refractory Medium-entropy Alloy CrTaTi[J]. 材料研究学报, 2023, 37(6): 443-452.
No Suggested Reading articles found!