Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (5): 321-331    DOI: 10.11901/1005.3093.2021.279
REVIEWS Current Issue | Archive | Adv Search |
Recent Development for Preparation Processes of Sm2Fe17N x Powders with High Magnetic Properties
HE Ying1, LI Chaoqun1, CHEN Xiaoli1, LONG Zhimei1, LAI Jiaqi1, SHAO Bin1,2(), MA Yilong1,2(), CHEN Dengming1,2, DONG Jiling1,2
1.School of Metallurgy and Material Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
2.Chongqing Key Laboratory of Nano-Micro Composites and Devices, Chongqing 401331, China
Cite this article: 

HE Ying, LI Chaoqun, CHEN Xiaoli, LONG Zhimei, LAI Jiaqi, SHAO Bin, MA Yilong, CHEN Dengming, DONG Jiling. Recent Development for Preparation Processes of Sm2Fe17N x Powders with High Magnetic Properties. Chinese Journal of Materials Research, 2022, 36(5): 321-331.

Download:  HTML  PDF(12208KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The rapid development of new energy vehicles requires permanent magnet materials that can work stably in the temperature range of 120℃~200℃. Sm2Fe17N3 with Curie temperature of 476℃ and anisotropic field of 14.7 T has excellent intrinsic magnetic properties, and can be used in this temperature range. In order to improve the magnetic properties of Sm2Fe17N3 powder, the particle size of which should be reduced to the critical size close to a single domain, so that to gain high anisotropic field; Meanwhile, surface oxidation caused by particle size reduction should be avoided to ensure high remanence magnetism and maximum magnetic energy product. High performance Sm2Fe17N3 can be prepared by powder crushing, mechanical alloying, strip casting, thin strip continuous casting, reduction diffusion and surface plating. At the present, the coercivity and maximum magnetic energy product of Sm2Fe17N3 powder prepared in laboratory have reached 28.1 kOe and 43.6 MGOe respectively. In this paper, the research results on the preparation of Sm2Fe17N3 powders in recent years are reviewed, including preparation methods and the relevant mechanism, and key problems that remain to be solved, namely the relation of the coercivity and remanence of Sm2Fe17N3 powder with the particle size, as well as with the particle magnetic domain structure;the mechanism related with the enhanced effect H2 within the gas mixture NH3/H2 on the nitriding efficiency of the powder still needs to be revealed; further the secondary crushing technique in low oxygen pressures, which can prepare particles with uniform distribution of particle size, while adjust their morphology, remains to be developed; for the present reduction diffusion method, new precursors, and their preparation methods suitable for massive production, and water washing technology for rapid removal of calcium by-products were also needed to develop.

Key words:  review      metallic material      Sm2Fe17N x      magnetic properties      preparation methods     
Received:  29 April 2021     
ZTFLH:  TM27  
Fund: Postgraduate Innovation Program of Chongqing University of Science and Technology(YKJCX2020215);Chongqing Natural Science Foundation(cstc2019jcyj-msxmX0162);The Key Project of Chongqing Ministry of Education(KJZD-M201801501);Chongqing University Innovation Research Team(CXQT19031)
About author:  MA Yilong, Tel: 13629700021, E-mail: yilongma@163.com
SHAO Bin, Tel: 13648368178, E-mail: shaobin19811107@163.com;

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.279     OR     https://www.cjmr.org/EN/Y2022/V36/I5/321

QuantityDensity/kg·m-3TC/℃Ms/emu·g-1Ha/TK1/MJ·m-3(BH)max/kJ·m-3
Nd2Fe14B77603121657.64.9515
Sm2Fe17N3768047616014.68.6475
Table 1  Comparison of the intrinsic magnetic properties of Nd2Fe14B and Sm2Fe17N3[16~19]
Fig.1  Relationship between (BH)max of Sm2Fe17N3 and (NdDy)FeB and temperature[20]
Fig.2  Bitter patterns of Sm2Fe17N x powders before (a) and after (b) ball milling and Changes of coercivity and oxygen content with ball milling time[35] (c)
Fig.3  XRD patterns (a, b), SEM images (c, d) and hyste-resis loops (e) of Sm2Fe17N x powders were obtained by different milling times at low temperature and room temperature, respec-tively[38]
Fig.4  Schematic diagram of preparing Sm2Fe17 by me-chanical alloying with planetary milling combined with plasma discharge technology (a) and demagnetization curve of Sm2Fe17N x samples after nitridation[44] (b)
Fig.5  Preparation of Sm2(FeCu)17N x by strip casting method and ball mill crushing technology (a) XRD of SmFeCu, SmFeCuN, SmFeN; (b) Backscattering image of SmCu phase in SmFeCuN; (c) SEM image of SmFeCuN powder and (d) Ob-taining the hysteresis loop of SmFeCuN powder with different milling time[46]
Fig.6  Reduction diffusion method preparation process (a); Images of the bulk body after reduction and diffusion (not ni-tridation) (b) and after nitridation (c) and SEM image of Sm2Fe17N3 powders after washing[50] (d)
Fig.7  Precursors were prepared by sol-gel method[29] (a), coprecipitation method[10] (b), hydrothermal method[54] (c) and solvopyrolysis method[56], SEM image and magnetization curve of Sm2Fe17N x obtained after reduction and diffusion treatment (d)
Fig.8  New preparation process of reduction diffusion method (slow oxidation treatment) (a) and the SR-XRD patterns (b, d) and demagnetization curves of the samples[11] (c, e)
Fig.9  Schematic diagrams of nitrogen distribution profiles for single nitrogen diffusion process (a) and grain growth pro-cess of the fully-nitride phase of Sm2Fe17N3 (FN) from the ni-trogen-poor phase of Sm2Fe17N x (NP, x<3)[62] (b)
Fig.10  Flow chart and schematic of the preparation of the Sm2Fe17N x /Sm2(Fe,Mn)17N x core-shell powder (a); Cross-sectional SEM and elemental mapping images of Mn-diffused Sm-Fe powder (b); demagnetization curves before and after heat treatment for Mn-diffused Sm-Fe-N core-shell powder (c) and Mn-free Sm-Fe-N powder[63] (d); Rate of increase in coercivity of Zn-coated Sm2Fe17N3 powders as function of average thickness of Zn layer[66] (e)
Preparation methodNitridationMorphologyImpurityPropertiesReference

Temperature

/K

Time

/h

Atmosphere

Length

/μm

Ms

/emu·g-1

Mr

/emu·g-1

Hcj

/kOe

Jet-milling technique///1.30/16314712.7[39]
Strip casting technique700~80010~24N20.80α-Fe16015513.0[44]
Strip casting technique69335N20.76/14.2 (kGs)12.5 (kGs)13.0[45]

Reduction-diffusion process

(Polymerized complex)

70310N20.69///23.2[27]

Reduction-diffusion process

(Co-precipitation)

693/

NH3/H2

(1:2 Vol/Vol)

0.90/1259028.1[11]

Reduction-diffusion process

(Hydrothermal)

6931

NH3/H2

(1:2 Vol/Vol)

0.66/14010524.1[53]

Reduction-diffusion process

(Thermal decomposition)

873/

Melamine

(C3H6N6)

0.10/128/15.4[55]
Table 2  Sm2Fe17N x prepared by different preparation process: nitriding conditions, physical and magnetic properties
1 Coey J M D. Perspective and prospects for rare earth permanent magnets [J]. Engineering, 2020, 6(2): 119
doi: 10.1016/j.eng.2018.11.034
2 Hono K, Sepehri-Amin H. Prospect for HRE-free high coercivity Nd-Fe-B permanent magnets [J]. Scr. Mater., 2018, 151: 6
doi: 10.1016/j.scriptamat.2018.03.012
3 Skomski R. Permanent magnets: history, current research, and outlook [J]. Nov. Function. Magn. Mater., 2016: 359
4 Skomski R, Coey J M D. Magnetic anisotropy—How much is enough for a permanent magnet? [J]. Scr. Mater., 2016, 112: 3
doi: 10.1016/j.scriptamat.2015.09.021
5 Yang J B, Kamaraju K, Yelon W B, et al. Magnetic properties of the MnBi intermetallic compound [J]. Appl. Phys. Lett., 2001, 79(12): 1846
doi: 10.1063/1.1405434
6 Sakuma, Akimasa. Electronic structure and magnetocrystalline anisotropy energy of MnAl [J]. J. Phys. Soc. Japan, 1999, 63(4): 1422
doi: 10.1143/JPSJ.63.1422
7 Wang D, Liou S H, He P, et al. SmFe12 and SmFe12N x films fabricated by sputtering [J]. J. magn. Magn. Mater., 1993, 124(1-2): 62
doi: 10.1016/0304-8853(93)90070-I
8 Soda R, Takagi K, Jinno M, et al. Anisotropic Sm2Fe17N3 sintered magnets without coercivity deterioration [J]. AIP Adv., 2016, 6(11): 115108
doi: 10.1063/1.4967364
9 Christodoulou C N, Komada N. High coercivity anisotropic Sm2Fe17N3 powders [J]. J. Alloys Compd., 1995, 222(1-2): 92
doi: 10.1016/0925-8388(94)04924-6
10 Okada S, Suzuki K, Node E, et al. Preparation of submicron-sized Sm2Fe17N3 fine powder with high coercivity by reduction-diffusion process [J]. J. Alloys Compd., 2017, 695: 1617
doi: 10.1016/j.jallcom.2016.10.306
11 Okada S, Node E, Takagi K, et al. Synthesis of Sm2Fe17N3 powder having a new level of high coercivity by preventing decrease of coercivity in washing step of reduction-diffusion process [J]. J. Alloys Compd., 2019, 804: 237
doi: 10.1016/j.jallcom.2019.06.385
12 Givord D, Lemaire R. Magnetic transition and anomalous thermal expansion in R2Fe17 compounds [J]. IEEE Trans. Magn., 1974, 10(2): 109-13
13 Li Z W, Morrish A H. Negative exchange interactions and Curie temperatures for Sm2Fe17 and Sm2Fe17N y [J]. Phys. Rev. B, 1997, 55(6): 3670
doi: 10.1103/PhysRevB.55.3670
14 Song C Y, Cheng S W, Wang S H, Zhao D G, Hu L G. Valence electron structure analysis of Curie temperature and magnetic properties of Sm2Fe17N3 [J]. Chin. J. Rare Met., 2019, 12
宋春燕, 程世伟, 王书桓 等. Sm2Fe17N3 居里温度及磁性能的价电子结构分析 [J]. 稀有金属, 2019, 12
15 Kuz'min M D, Coey J M D. Magnetocrystalline anisotropy of 3d-4f intermetallics: Breakdown of the linear theory [J]. Phys. Rev. B, 1994, 50(17): 12533
pmid: 9975413
16 Coey J M D, Skomski R, Wirth S. Gas phase interstitial modification of rare-earth intermetallics [J]. IEEE Trans. Magn., 1992, 28(5): 2332-7
17 Coey J M D, Sun H. Improved magnetic properties by treatment of iron-based rare earth intermetallic compounds in anmonia [J]. J. Magn. Magn. Mater., 1990, 87(3): L251
doi: 10.1016/0304-8853(90)90756-G
18 Iriyama T, Kobayashi K, Imaoka N, et al. Effect of nitrogen content on magnetic properties of Sm2Fe17N x (0<x<6) [J]. IEEE Trans. Magn., 1992, 28(5): 2326
19 Coey J M D, Stamenov P, Porter S B, et al. Sm-Fe-N revisited; remanence enhancement in melt-spun nitroquench material [J]. J. Magn. Magn. Mater., 2019, 480: 186
doi: 10.1016/j.jmmm.2019.02.076
20 Sagawa M, Fujimura S, Togawa N, et al. New material for permanent magnets on a base of Nd and Fe [J]. J. Phys. D, 1984, 55(6): 2083
21 Xing M, Han J, Wan F, et al. Preparation of anisotropic Sm2Fe17N x magnetic materials by strip casting technique [J]. IEEE Trans. Magn., 2013, 49(7): 3248-50.
22 Kou X C, Sinnecker E, Grössinger R, et al. Magnetization reversal process of Zn-bonded anisotropic Sm-Fe-N permanent magnets [J]. Phys. Rev. B, 1995, 51(22): 16025
pmid: 9978584
23 Xing M, Han J, Zhang Y, et al. Nitrogenation effect of Sm2Fe17 alloys prepared by strip casting technique [J]. J. Phys. D, 2015, 117(17): 17A732.
24 Kobayashi K, Skomski R, Coey J M D. Dependence of coercivity on particle size in Sm2Fe17N3 powders [J]. J. Alloys Compd., 1995, 222(1-2): 1
doi: 10.1016/0925-8388(94)04902-5
25 Wendhausen P A P, Gebel B, Eckert D, et al. Effect of milling on the magnetic and microstructural properties of Sm2Fe17N x permanent magnets [J]. J. Phys. D, 1994, 75(10): 6018
26 Matsuura M, Yamamoto K, Tezuka N, et al. Microstructural changes in high-coercivity Zn-bonded Sm-Fe-N magnets [J]. J. Magn. Magn. Mater., 2020, 510: 166943
doi: 10.1016/j.jmmm.2020.166943
27 Zhang D T, Yue M, Zhang J X. Study on bulk Sm2Fe17N x sintered magnets prepared by spark plasma sintering [J]. Powder metal., 2007, 50(3): 215
doi: 10.1179/174329007X169128
28 Dongtao Z, Ming Y, Jiuxing Z. Structure and magnetic properties of Sm2Fe17N x sintering magnets prepared by spark plasma sintering [J]. J. Rare Earths, 2006, 24(1): 325
doi: 10.1016/S1002-0721(07)60392-5
29 Hirayama Y, Panda A K, Ohkubo T, et al. High coercivity Sm2Fe17N3 submicron size powder prepared by polymerized-complex and reduction-diffusion process [J]. Scr. Mater., 2016, 120: 27
doi: 10.1016/j.scriptamat.2016.03.028
30 Yamaguchi W, Soda R, Takagi K. Role of surface iron oxides in coercivity deterioration of Sm2Fe17N3 magnet associated with low temperature sintering [J]. Mater. Trans., 2019, 60(3): 479
doi: 10.2320/matertrans.M2018358
31 Takagi K, Nakayama H, Ozaki K. Microstructural behavior on particle surfaces and interfaces in Sm2Fe17N3 powder compacts during low-temperature sintering [J]. J. Magn. Magn. Mater., 2012, 324(15): 2336
doi: 10.1016/j.jmmm.2012.02.021
32 Schnitzke K, Schultz L, Wecker J, et al. High coercivity in Sm2Fe17N x magnets [J]. Appl. Phys. Lett., 1990, 57(26): 2853
doi: 10.1063/1.104202
33 Yang J, Zhou S Z, Zhang M C, et al. Preparation and magnetic properties of Sm2Fe17N x compound [J]. Mater. Lett., 1991, 12: 242
doi: 10.1016/0167-577X(91)90006-R
34 Ding J, McCormick P G, Street R. Structure and magnetic properties of anisotropic Sm2Fe17N x powders [J]. Appl. Phys. Lett., 1992, 61: 2721
doi: 10.1063/1.108072
35 Wendhausen P A P, Gebel B, Eckert D, et al. Effect of milling on the magnetic and microstructural properties of Sm2Fe17N x permanent magnets [J]. J. Phys. D, 1994, 75: 6018
36 Kobayashi K, Skomski R, Coey J M D. Dependence of coercivity on particle size in Sm2Fe17N3 powders [J]. J. Alloys Compd., 1995, 222: 1
doi: 10.1016/0925-8388(94)04902-5
37 Hu J, Dragon T, Sartorelli M L, et al. Investigation of the domain structure of Sm2Fe17N x intermetallic nitrides [J]. Phys. Status Solidi (a), 1993, 136(1): 207
doi: 10.1002/pssa.2211360125
38 Zhang S L, Liu L D, Du J, et al. Sm2Fe17N x nanoflakes prepared by surfactant assisted cryomilling [J]. J. Phys. D, 2014, 115: 17A706
39 Fang Q, An X, Wang F, et al. The structure and magnetic properties of Sm-Fe-N powders prepared by ball milling at low temperature [J]. J. Magn. Magn. Mater., 2016, 410: 116
doi: 10.1016/j.jmmm.2016.03.029
40 Li Y P, Wang F Q, Liu J P, et al. Fabrication of remarkably magnetic-property-enhanced anisotropic Sm2Fe17N x nanoflakes fabricated by surfactant assisted ball milling at low temperature [J]. J. Magn. Magn. Mater., 2020, 498(15): 166191
doi: 10.1016/j.jmmm.2019.166191
41 Hosokawa A, Yamaguchi W, Suzuki K, et al. Influences of microstructure on macroscopic crystallinity and magnetic properties of Sm-Fe-N fine powder produced by jet-milling [J]. J. Alloys Compd., 2021, 869: 159288
doi: 10.1016/j.jallcom.2021.159288
42 Lv M Q, Song Q H, Sun W S, et al. Preparation of Sm-Fe alloys by mechanical alloying and its crystal-lization and nitriding processes [J]. Acta Metall. Sin., 1992, 28(10): 53
吕曼祺, 宋启洪, 孙文声 等. 用机械合金化法制备Sm-Fe合金及其晶化与氮化过程探讨 [J]. 金属学报, 1992, 28(10): 53
43 Kou X C, Qiang W J, Kronmüller H, sl et. Coercivity of Sm-Fe-N ferromagnets produced by the mechanical alloying technique [J]. J. Phys. D, 1993, 74(11): 6791
44 Xu K, Liu Z, Yu H, et al. Improved efficiency for preparing hard magnetic Sm2Fe17N x powders by plasma assisted ball milling followed by nitriding [J]. J. Magn. Magn. Mater., 2020, 500: 166383
doi: 10.1016/j.jmmm.2019.166383
45 Ma X B, Li L Z, Liu S Q, et al. Anisotropic Sm-Fe-N particles prepared by surfactant-assisted grinding method [J]. J. Alloys Compd., 2014, 612: 110
doi: 10.1016/j.jallcom.2014.05.142
46 Lu C, Hong X, Bao X, et al. Changing phase equilibria: A method for microstructure optimization and properties improvement in preparing anisotropic Sm2Fe17N3 powders [J]. J. Alloys Compd., 2019, 784: 980
doi: 10.1016/j.jallcom.2019.01.098
47 Pinkerton F E, Fuerst C D. High-coercivity samarium-iron-nitrogen from nitriding melt-spun ribbons [J]. J. Mater. Eng. Perform., 1993, 2(2): 219
doi: 10.1007/BF02660289
48 Atsushi K, Takashi I, Shinichi Y, et. al . Sm2Fe17N3 magnet powder made by reduction and diffusion method [J]. IEEE Trans. Magn., 1999, 35(5): 3322
49 Ishikawa T, Iseki T, Yokosawa K, et al. Sm-(Fe, Mn) Magnet Powder made by reduction and diffusion method [J]. IEEJ Trans. Fund. Mater., 2004 124(10): 881
50 Ishikawa T, Yokosawa K, Watanabe K, et al. Modified process for high performance anisotropic Sm2Fe17N3 magnet powder [J]. J. Phys. Conf. Ser., 2011, 266: 012033
51 Guo G S, Wang T G, Yu W Y. The preparation of Sm2Fe17N x [J]. Chin. J. Rare Earth, 2005, 26(6): 53
郭光思, 王广太, 于伟业 等. Sm2Fe17N x 的制备 [J]. 中国稀土学报, 2005, 26(6): 53
52 Lee J G, Kang S W, Si P Z, et al. The influence of mechanical milling on the structure and magnetic properties of Sm-Fe-N powder produced by the reduction-diffusion process [J]. J. Magn., 2011, 16(2): 104
doi: 10.4283/JMAG.2011.16.2.104
53 Okada S, Takagi K, Ozaki K. Investigation of optimal route to fabricate submicron-sized Sm2Fe17 particles with reduction-diffusion method [J]. AIP Adv., 2016, 6(5): 056018
54 Okada S, Suzuki K, Node E, et al. Improvement of magnetization of submicron-sized high coercivity Sm2Fe17N x powder by using hydrothermally synthesized sintering-tolerant cubic hematite [J]. AIP Adv., 2017, 7(5): 056219
55 Kim J, Wu H L, Hsu S, et al. Nanoparticle approach to the formation of Sm2Fe17N3 hard magnetic particles [J]. Chem. Lett., 2019, 48(9): 1054
doi: 10.1246/cl.190376
56 Shen B, Yu C, Baker A A, et al. Chemical synthesis of magnetically hard and strong rare earth metal based nanomagnets [J]. Angew. Chem. Int. Ed., 2019, 58(2): 602
doi: 10.1002/anie.201812007 pmid: 30414238
57 Zheng J, Tian S, Liu K, et al. Preparation of submicron-sized Sm2Fe17N3 fine powder by ultrasonic spray pyrolysis-hydrogen reduction (USP-HR) and subsequent reduction-diffusion process [J]. AIP Adv., 2020, 10(5): 055119
58 Okada S, Takagi K, Ozaki K, et al. Direct preparation of submicron-sized Sm2Fe17 ultra-fine powders by reduction-diffusion technique [J]. J. Alloys Compd., 2016, 663: 872
doi: 10.1016/j.jallcom.2015.12.124
59 Onoue M, Kobayashi R, Mitsui Y, et al. Magnetic field-induced nitridation of Sm2Fe17 [J]. J. Alloys Compd., 2020, 835: 155193
doi: 10.1016/j.jallcom.2020.155193
60 Xiao X F, Si P Z, Ge H L, et al. Preparation of Sm-Fe-N by high-pressure N2 nitridation and Sm2Fe17 by a diffusion process [J]. J. Electron. Mater., 2018, 47(12): 7472
doi: 10.1007/s11664-018-6688-5
61 Zhou S Z, Yu S J, Zhang M C, et al. Diffusion of nitrogen atoms during the preparation of Sm2Fe17N y per-manent magnet alloy by gas-solid reaction method [J]. Acta Metall. Sin., 1996, 32(8): 877
周寿增, 于申军, 张茂才 等. 气-固相反应法制备Sm2Fe17N y 永磁合金过程中氮原子的扩散 [J]. 金属学报, 1996, 32(8): 877
62 Fujii H, Tatami K, Koyama K. Nitrogenation process in Sm2Fe17 under various N2-gas pressures up to 6 MPa [J]. J. Alloys Compd., 1996, 236(1-2): 156
doi: 10.1016/0925-8388(95)02080-2
63 Matsuura M, Yarimizu K, Osawa Y, et al. Preparation of Mn-diffused Sm-Fe-N core-shell powder by reduction-diffusion process [J]. J. Magn. Magn. Mater., 2019, 471: 310
doi: 10.1016/j.jmmm.2018.09.084
64 Imaoka N, Iriyama T, Itoh S, et al. Effect of Mn addition to Sm-Fe-N magnets on thermal stability of coercivity [J]. J. Alloys Compd., 1995, 222(1): 73
doi: 10.1016/0925-8388(94)04920-3
65 Yamaguchi W, Soda R, Takagi K. Metal-coated Sm2Fe17N3 magnet powders with an oxide-free direct metal-metal interface [J]. J. Magn. Magn. Mater., 2020, 498: 166101
doi: 10.1016/j.jmmm.2019.166101
66 Yamaguchi W, Takagi K. Effects of nonmagnetic overlay metals on coercivity of Sm2Fe17N3 magnet powders [J]. J. Magn. Magn. Mater., 2020, 516: 167327
doi: 10.1016/j.jmmm.2020.167327
67 Matsuura M, Shiraiwa T, Tezuka N, et al. High coercive Zn-bonded Sm-Fe-N magnets prepared using fine Zn particles with low oxygen content [J]. J. Magn. Magn. Mater., 2018, 452: 243
doi: 10.1016/j.jmmm.2017.12.059
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!