Please wait a minute...
Chinese Journal of Materials Research  2018, Vol. 32 Issue (1): 42-50    DOI: 10.11901/1005.3093.2017.155
ARTICLES Current Issue | Archive | Adv Search |
Anticorrosion Properties of Waterborn SiO2@PANI/VTMS Coating on Surface of Mg-Li Alloy
Xiaohui GAO1,2, Xiaoyan JING1(), Yufeng LI3, Jingjing ZHU2, Shi QI2
1 College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
2 College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
3 College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006, China
Cite this article: 

Xiaohui GAO, Xiaoyan JING, Yufeng LI, Jingjing ZHU, Shi QI. Anticorrosion Properties of Waterborn SiO2@PANI/VTMS Coating on Surface of Mg-Li Alloy. Chinese Journal of Materials Research, 2018, 32(1): 42-50.

Download:  HTML  PDF(2919KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Nano-SiO2 was firstly modified by (3-glycidoxypropyl)-trimethoxylsilane (GPTMS), and then was grafted with polyaniline (PANI) to form nano-SiO2 (SiO2@PANI) sol with core-shell structure through chemical bonding. Further, the nano-SiO2 (SiO2@PANI) sol was in situ embedded with vinyl trimethoxysilane (VTMS) to prepare the water-born SiO2@PANI/VTMS sol, which can be used as coating material for Mg-Li alloy. The structure and morphology of SiO2@PANI were characterized by Fourier transform infrared spectrum (FT-IR), X-ray diffractometer (XRD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) etc. The corrosion resistance of the coating was assessed by potentiodynamic polarization curves and electrochemical impedance spectra (EIS). The effect of aniline- and VTMS-dosage on the particle size, hydrophobic property and corrosion resistance of SiO2@PANI were also examined, and the possible anticorrosion mechanism was proposed. The results show that the SiO2@PANI/VTMS coatings have a high hydrophobic angle, which could reach 145.5° when m(An):m(TEOS)=7:100 and m(VTMS):m(TEOS)=4:4. The composite coatings on Mg-Li alloy present excellent corrosion resistance performance with electrochemical impedance value 7.5×104 Ωcm2 and corrosion current density 4.47×10-8 A/cm2.

Key words:  materials failure and protection      polyaniline      nano-silica      chemical bonding      Mg-Li alloy      anticorrosion     
Received:  28 February 2017     
ZTFLH:  TB304  
Fund: Supported by National Natural Science Foundation of China (No. 51401113), Postdoctoral Science-research Developmental Foundation of Heilongjiang Province of China (No. LBH-Q13171)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2017.155     OR     https://www.cjmr.org/EN/Y2018/V32/I1/42

Fig.1  FTIR spectra of SiO2, PANI and SiO2@PANI
Fig.2  XRD patterns of SiO2, PANI and SiO2@PANI
Fig.3  XPS spectrum of SiO2@PANI
Fig.4  TEM photographs of SiO2 (a) and SiO2@PANI as m(An):m(TEOS) is 3:100 (b), m(An):m(TEOS) is 7:100 (c) and m(An):m(TEOS) is 20:100 (d)
Fig.5  The particle size distributions of SiO2@PANI with different m(An):m(TEOS)
Fig.6  Potentiodynamic polarization curves for Mg-Li alloy coated by SiO2@PANI/VTMS composite coatings with different aniline dosages
m(An):m(TEOS) Electrical conductivity/Scm-1 Contact angle/° Corrosion rate/mma-1 Rp/Ωcm2 Icorr/Acm-2 Ecorr/V PEF/%
Mg-Li 1.24×100 5.50×10 4.74×10-4 -1.61 ——
3:100 3.2×10-4 139.4 1.02×10-1 6.67×103 3.91×10-6 -1.57 99.17
5:100 6.9×10-3 140.9 1.60×10-2 4.26×104 6.12×10-7 -1.48 99.87
7:100 7.4×10-2 140.2 3.19×10-3 2.58×105 1.01×10-7 -1.22 99.98
10:100 3.8×10-2 135.7 1.97×10-2 3.47×104 7.51×10-7 -1.29 99.84
20:100 4.2×10-2 129.8 3.57×10-2 1.91×104 1.36×10-6 -1.38 99.71
Table 1  Conductivity of SiO2@PANI, contact angle, fitting results of potentiodynamic polarization curves of composite coatings with different aniline dosages
Fig.7  EIS for Mg-Li alloy coated by SiO2@PANI/VTMS composite coatings with different aniline dosages (a) Nyquist plot; (b) Bode plot
m(VTMS):m(TEOS) Contact angle/° Adhesion / grade Corrosion rate/mma-1 Rp/Ωcm2 Icorr/Acm-2 Ecorr/V PEF/%
Dry Wet
1:4 124.8 2 4 1.09×10-1 6.27×103 4.16×10-6 -1.43 99.12
2:4 131.2 1 2 1.89×10-2 3.61×104 7.22×10-7 -1.30 99.85
3:4 140.2 0 1 3.19×10-3 2.58×105 1.01×10-7 -1.22 99.98
4:4 145.5 0 0 1.17×10-3 5.84×105 4.47×10-8 -1.17 99.99
6:4 139.7 0 0 2.25×10-3 3.04×105 8.57×10-8 -1.20 98.98
Table 2  Contact angle, adhesion, fitting results of potentiodynamic polarization curves of composite coatings with different VTMS dosages
Fig.8  Potentiodynamic polarization curves for Mg-Li alloy coated by SiO2@PANI/VTMS composite coatings with different VTMS dosages
Fig.9  EIS for Mg-Li alloy coated by SiO2@PANI/VTMS composite coatings with different VTMS dosages (a) Nyquist plot; (b) Bode plot
Fig.10  High resolution XPS spectra of Mg 1s (a) and O 1s (b) of the surface of Mg-Li alloy beneath the coating
Fig.11  Anticrrosion mechanism of SiO2@PANI/VTMS coating on Mg-Li alloy in initial (a), medium (b) and later stage (c) of immersion
[1] Ma L, Liang W C, Gan M Y, et al.Effect of APS/NaClO composite oxidant on morphology and electrochemical properties of polyaniline prepared by emulsion polymerization[J]. Acta Chim. Sinica, 2012, 70(10): 1207(马利, 梁卫朝, 甘孟瑜等. APS/NaClO复合氧化剂对乳液法合成聚苯胺的微观形貌及其电化学性能的影响[J]. 化学学报, 2012, 70(10): 1207)
[2] Xing C J, Yu L M, Zhang Z M.Superhydrophobic polyaniline micro/nano structures as anticorrosion coating[J]. Chem. J. Chinese Universities, 2013, 34(8): 1999(邢翠娟, 于良民, 张志明. 超疏水性聚苯胺微/纳米结构的合成及防腐蚀性能[J]. 高等学校化学学报, 2013, 34(8): 1999)
[3] Wang N, Cheng K Q, Wu H, et al.Preparation and anti-corrosion properties of conductive polyaniline/waterborne epoxy resin coatings[J]. Chin. J. Mater. Res., 2013, 27(4): 432(王娜, 程克奇, 吴航等. 导电聚苯胺/水性环氧树脂防腐涂料的制备及防腐性能[J]. 材料研究学报, 2013, 27(4): 432)
[4] Gordana ? M, Recent advances in polyaniline research: Polymerization mechanisms, structural aspects, properties and applications[J]. Synth. Met., 2013, 177: 1
[5] Liang J, Hu Y C, Wu Y Q, et al.Facile formation of superhydrophobic silica-based surface on aluminum substrate with tetraethylorthosilicate and vinyltriethoxysilane as co-precursor and its corrosion resistant performance in corrosive NaCl aqueous solution[J]. Surf. Coat. Technol., 2014, 240: 145
[6] Weng C J, Chang C H, Lin I L, et al.Advanced anticorrosion coating materials prepared from ?uoro-polyaniline-silica composites with synergistic effect of superhydrophobicity and redox catalytic capability[J]. Surf. Coat. Technol., 2012, 207: 42
[7] Yu Q J, Xu M, Liu J, et al.Synthesis and properties of PANI/SiO2 organic-inorganic hybrid ?lms[J]. Appl. Surf. Sci., 2012, 263: 532
[8] Chen X, Shen K, Zhang J, et al.Preparation and anticorrosion properties of polyaniline-SiO2-containing coating on Mg-Li alloy[J]. Pigment Resin Technology, 2010, 39: 322
[9] Liu N J, Luo J, Wang X H, et al.Water borne anti-corrosion coating from conductive polyaniline polysilsesquioxane hybrids[J]. Acta Polymerica Sinica, 2009, 2: 173(刘年江, 罗静, 王献红等. 水基导电聚苯胺/二氧化硅杂化材料的防腐性能研究[J]. 高分子学报, 2009, 2: 173)
[10] Kim M Y, Cho S H, Song J Y, et al.Controllable synthesis of highly conductive polyaniline coated silica nanoparticles using self-stabilized dispersion polymerization[J]. ACS Appl. Mater. Interfaces, 2012, 4: 4603
[11] Liu P, Liu W M, Xue Q J, et al.Preparation and characterization of polyaniline grafted silica nanoparticles[J]. Polym. Polym. Compos., 2004, 12: 695
[12] Liu X X, Dou Y Q, Wu J, et al.Chemical anchoring of silica nanoparticles onto polyaniline chains via electro-co-polymerization of aniline and N-substituted aniline grafted on surfaces of SiO2 [J]. Electrochim. Acta, 2008, 53: 4693
[13] Weng C J, Chen Y L, Chien C M et al. Preparation of gold decorated SiO2@polyaniline core-shell microspheres and application as a sensor for ascorbic acid[J]. Electrochim. Acta, 2013, 95: 162
[14] Dai C F, Weng C J, Chien C M, et al.Using silane coupling agents to prepare raspberry-shaped polyaniline hollow microspheres with tunable nanoshell thickness[J]. J. Colloid Interface Sci., 2013, 394: 36
[15] Song Y W, Shan D Y, Chen R S, et al.Corrosion characterization of Mg-8Li alloy in NaCl solution,[J]. Corros. Sci., 2009, 51: 1087
[16] Xu L H, Wang L M, Shen Y, et al.Preparation of hexadecyltrimethoxysilane-modified silica nanocomposite hydrosol and superhydrophobic cotton coating[J]. Fibers Polym., 2015, 16(5): 1082
[17] Lee S, Hong J Y, Jang J, Synthesis and electrical response of polyaniline/poly(styrene sulfonate)-coated silica spheres prepared by seed-coating method[J]. J. Colloid Interface Sci., 2013, 398: 33
[18] Li Y F, Zhu J J, Gao X H, et al.Preparation of Polyaniline Microemulsion and Anticorrosion Performance of Its Composite Coatings with Versatate-Fluoro-Acrylate Emulsion[J]. Chin. J. Mater. Res., 2016, 30(2): 131(李玉峰, 祝晶晶, 高晓辉等. 聚苯胺微乳液的制备及与叔氟丙烯酸酯乳液复合涂层的防腐性能[J]. 材料研究学报, 2016, 30(2): 131)
[1] GAO Wei, LIU Jiangnan, WEI Jingpeng, YAO Yuhong, YANG Wei. Structure and Properties of Cu2O Doped Micro Arc Oxidation Coating on TC4 Titanium Alloy[J]. 材料研究学报, 2022, 36(6): 409-415.
[2] YANG Liuyang, TAN Zhuowei, LI Tongyue, ZHANG Dalei, XING Shaohua, JU Hong. Dynamic Corrosion Behavior of Pipeline Defects Characterized by WBE and EIS Testing Techniques[J]. 材料研究学报, 2022, 36(5): 381-391.
[3] YIN Jie, HU Yuntao, LIU Hui, YANG Yifei, WANG Yifeng. Constructing Polyaniline/Alginate Film by Electrodeposition and Its Electrochemical Properties[J]. 材料研究学报, 2022, 36(4): 314-320.
[4] LI Yufeng, ZHANG Nianfei, LIU Lishuang, ZHAO Tiantian, GAO Wenbo, GAO Xiaohui. Preparation of Phosphorus-containing Graphene and Corrosion Resistance of Composite Coating[J]. 材料研究学报, 2022, 36(12): 933-944.
[5] CHEN Yiwen, WANG Cheng, LOU Xia, LI Dingjun, ZHOU Ke, CHEN Minghui, WANG Qunchang, ZHU Shenglong, WANG Fuhui. Protective Performance of a Novel Inorganic Composite Coatings on CB2 Ferritic Heat Resistant Steel at 650℃ in Oxygen Flow with Water Vapor[J]. 材料研究学报, 2021, 35(9): 675-681.
[6] YANG Xiaogang, CUI Shihong, LI Bin, WANG Chuanjie, HAN Jiejia. Preparation and Corrosion Resistance of Graphene/Acetic Acid Doped Polyaniline[J]. 材料研究学报, 2021, 35(5): 357-363.
[7] ZHANG Dalei, WEI Enze, JING He, YANG Liuyang, DOU Xiaohui, LI Tongyue. Construction of Super-hydrophobic Structure on Surface of Super Ferritic Stainless Steel B44660 and Its Corrosion Resistance[J]. 材料研究学报, 2021, 35(1): 7-16.
[8] WANG Guanyi, CHE Xin, ZHANG Haoyu, CHEN Lijia. Low-cycle Fatigue Behavior of Al-5.4Zn-2.6Mg-1.4Cu Alloy Sheet[J]. 材料研究学报, 2020, 34(9): 697-704.
[9] HUANG Anran, ZHANG Wei, WANG Xuelin, SHANG Chengjia, FAN Jiajie. Corrosion Behavior of Ferritic Stainless Steel in High Temperature Urea Environment[J]. 材料研究学报, 2020, 34(9): 712-720.
[10] GONG Weiwei, YANG Bingkun, CHEN Yun, HAO Wenkui, WANG Xiaofang, CHEN Hao. In Situ SECM Observation of Corrosion Behavior of Carbon Steel at Defects of Epoxy Coating under AC Current Conditions[J]. 材料研究学报, 2020, 34(7): 545-553.
[11] ZHU Jinyang, TAN Chengtong, BAO Feihu, XU Lining. CO2 Corrosion Behaviour of A Novel Al-containing Low Cr Steel in A Simulated Oilfield Formation Water[J]. 材料研究学报, 2020, 34(6): 443-451.
[12] LIANG Xinlei, LIU Qian, WANG Gang, WANG Zhenyu, HAN En-Hou, WANG Shuai, YI Zuyao, LI Na. Study on Corrosion Resistance and Thermal Insulation Properties of Graphene Oxide Modified Epoxy Thermal Insulation Coating[J]. 材料研究学报, 2020, 34(5): 345-352.
[13] WANG Zhihu,ZHANG Jumei,BAI Lijing,ZHANG Guojun. Effect of Hydrothermal Treatment on Microstructure and Corrosion Resistance of Micro-arc Oxidization Ceramic Layer on AZ31 Mg-alloy[J]. 材料研究学报, 2020, 34(3): 183-190.
[14] SHANG Baihui,MA Yuantai,MENG Meijiang,LI Ying. Characterisation of Passive Film on HRB400 Steel Rebar in Curing Stage of Concrete[J]. 材料研究学报, 2019, 33(9): 659-665.
[15] YIN Qi,LIU Miaoran,LIU Yuwei,PAN Chen,WANG Zhenyao. Effect of MgCl2 Deposite on Simulated Atmospheric Corrosion of Zn via Wet-dry Altertnating Corrosion Test[J]. 材料研究学报, 2019, 33(9): 705-712.
No Suggested Reading articles found!