Please wait a minute...
Chinese Journal of Materials Research  2018, Vol. 32 Issue (1): 33-41    DOI: 10.11901/1005.3093.2016.791
ARTICLES Current Issue | Archive | Adv Search |
Fracture Behavior of Thick X80 Pipeline Steel Plates at -25℃
Liang HONG1, Xiurong ZUO1(), Yinglun JI1, Ge MA1, Junyuan DONG1, Lei CHEN2
1 School of Physical Engineering, Key Laboratory of Materials and Physics (Zhengzhou University), Ministry of Education, Zhengzhou 450052, China
2 School of Mechatronic Engineering, Zhengzhou University of Aeronautics, Zhengzhou 450052, China
Cite this article: 

Liang HONG, Xiurong ZUO, Yinglun JI, Ge MA, Junyuan DONG, Lei CHEN. Fracture Behavior of Thick X80 Pipeline Steel Plates at -25℃. Chinese Journal of Materials Research, 2018, 32(1): 33-41.

Download:  HTML  PDF(10213KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of microstructure on tearing fracture behavior for thick plates of X80 pipeline steel was assessed at -25 oC by means of drop-weight tear tester (DWTT),as well as optical microscopy and scan electron microscopy (SEM). The result shows that the volume fraction of acicular ferrite reduced gradually in the thickness direction and reached a minimum level at the center of the plate, whilst more volume fraction of granular bainite (GB), polygonal-like ferrite (PF) and quasi-polygonal-like ferrite (QF) appeared. The higher volume fraction of acicular ferrite of the plate is, the larger tearing share area will be. In addition, the existence of PF and QF, and large size martensite-austenite (MA) could lead to the initiation of cleavage crack, and reduce the fracture toughness of the plate. During the crack propagation process, microstructures near the main crack deformed and elongated seriously, but the hard and brittle MA can hardly deform, resulting in the growth of voids and formation of micro cracks. The secondary crack is always reflected by or arrested on acicular ferrite boundaries, which demonstrates that the acicular ferrite has good toughness, and thereby retards the crack propagation effectively.

Key words:  metallic materials      pipeline steel      X80      drop-weight tear test      fracture behavior      microstructure     
Received:  30 December 2016     
ZTFLH:  TG142.1  

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.791     OR     https://www.cjmr.org/EN/Y2018/V32/I1/33

C Mn P S Si Ni+Cr+Cu+Mo Nb+Ti
0.05 1.54 0.010 0.001 0.25 0.386 0.056
Table 1  Chemical compositions of the X80 pipeline steels (%, mass fraction)
Fig.1  Shape and dimensions of DWTT specimen
Fig.2  Optical fractographs of DWTT specimens at -25oC
Sample Share area/% Ductile fracture area/% Initial cleavage
fracture area/%
Inverse cleavage
fracture area/%
1# 91 86.2 1.2 12.6
2# 67 56.1 25.7 18.2
Table 2  Area fraction of fracture area of the DWTT specimens (tested at -25oC)
Fig.3  Band structures of the 1# and 2# specimens in different thickness (a, c) 1/4 thickness and 1/2 thickness of 1# specimen; (b, d) 1/4 thickness and 1/2 thickness of 2# specimen
Fig.4  SEM micrographs of the 1# and 2# specimens in different thickness (a, c, e) surface, 1/4 thickness and 1/2 thickness of 1# specimen; (b, d, f) surface, 1/4 thickness and 1/2 thickness of 2# specimen
Sample Position AF/% GB/% PF+QF/% BF/% MA/%
1# Surface 79.97 10.07 3.54 6.42
1/4 thickness 76.16 8.75 6.20 8.89
1/2 thickness 58.59 18.44 9.37 2.91 10.69
Average 71.57 12.42 6.37 0.97 8.67
2# Surface 71.62 5.74 11.07 0.9 10.67
1/4 thickness 72.81 8.05 7.70 1.0 10.44
1/2 thickness 54.61 20.25 15.30 2.0 7.84
Average 66.35 11.34 11.35 1.30 9.65
Table 3  Volume fraction of AF, GB, PF+QF, and MA in the X80 pipeline steels
Fig.5  Optical micrographs of MA constituents of the 1# and 2# specimens in different thickness (a, c, e) surface, 1/4 thickness and 1/2 thickness of 1# specimen; (b, d, f) surface, 1/4 thickness and 1/2 thickness of 2# specimen
Fig.6  The size distribution of MA constituents of the 1# and 2# specimens (a) the number of MA constituents on per unit area; (b) the number fraction of MA constituents with different size
Fig.7  SEM micrographs of the crack propagation and microstructure beneath the DWTT specimen (a) distribution of microstructures and voids; (b) high magnification images of the area in Fig.a; (c) main crack and microstructure around cleavage fracture region; (d) voids and micro cracks around the region of share lip
Fig.8  SEM micrographs of the secondary crack beneath the main crack of DWTT specimen (a) crack propagate through MA island and defect at grain boundary; (b) crack propagate in AF; (c) crack terminated around AF and MA island
[1] Shin Y S, Huang B, Lee S, et al.Correlation of microstructure and charpy impact properties in API X70 and X80 line-pipe steels[J]. Mater. Sci. Eng. A, 2007, 458(1-2): 281
[2] Li C W, Wang Y, Chen Y H.Influence of peak temperature during in-service welding of API X70 pipeline steels on microstructure and fracture energy of the reheated coarse grain heat-affected zones[J]. J. Mater. Sci., 2011, 46(19): 6424
[3] Hong S, Shin S Y, Lee S, et al.Effect of specimen of thickness and notch shape on fracture modes in drop weight tear test of API X 70 and X80 linepipe steels[J]. Metall. Mater. Trans. A, 2011, 42(9): 2619
[4] Nastich S Y.Ferrite-bainitic structure and ductile fracture resistance of high-strength pipe steels[J]. Russian Metallurgy, 2013, 2013(10): 765
[5] Nastich S Y, Soya S V, Molostlv M A, et al.Effect of temperature for the start of finish rolling on coiled steel X70 microstructure and cold resistance[J]. Metallurgist, 2012, 56(7): 57
[6] Orlov V V, Malyshevskii V A, Kulusova E I, et al.Production technology for artic pipeline and marine steel[J]. Steel in Tanslation, 2014, 44(9): 696
[7] Kang K B, Chon S H, Yoo J Y.Microstructure and mechanical properties of heavy gauge API-X80 linepipe steel for artic application[A]. The 22th International Offshore and Polar Engineering Conference[C]. Rhodes, 2012
[8] Nie W J, Xin W F, Xu T M, et al. Enhancing the toughness of heavy thick X80 pipeline steel plates by microstructure control [J]. Advanced Materials Research, 2011, 194-196: 1183
[9] Fujishuro T, Hara T, Terada Y.Application of B-added low carbon bainite steels to heavier wall X80 UOE line pipes [A]. The 19th International Offshore and Polar Engineering Conference[C]. Osaka, 2009
[10] Han S Y, Shin S Y, Seo C H, et al.Effects of Mo, Cr, and V additions on tensile and charpy impact properties of API X80 pipeline steels[J]. Metall. Mater. Trans. A, 2009, 40: 1851
[11] Sung H K, SohnS S, Shin S Y, et al. Effect of finish rolling temperature on inverse fracture occurring during drop weigh tear test of API X80 pipeline steels[J]. Mater. Sci. Eng. A, 2012, 541: 181
[12] Kang M, Kim H, Lee S, et al.Effect of dynamic strain hardening exponent on abnormal cleavage fracture occurring during drop weight tear test of API X70 and X80 linepile steels[J]. Metall. Mater. Trans. A, 2014, 45(2): 682
[13] Kim B C, Lee S, Kim N J, et al.Microstructure and local brittle zone phenomena in high-strength low-alloy steel welds[J]. Metall. Trans. A, 1991, 22(1): 139
[14] Shimamura J, Ishikawa N, Endo S, et al.Development of heavy wall X70 high strain linepipe steel [A]. The 23th International Offshore and Polar Engineering Conference[C]. Anchorage, Alaska, 2013
[15] American Petroleum Institute.Drop-weight tear test on line pipe. API Recommended 5L3[S]. API, Washington, DC, 2014
[16] Deng W, Gao X H, Qing X M, et al.Impact fracture behavior of X80 pipeline steel[J]. Acta. Metall. Sin., 2010, 46(5): 533(邓伟, 高秀华, 秦小梅等. X80管线钢的冲击断裂行为[J]. 金属学报, 2010, 46(5): 533)
[17] Kim Y M, Shin S Y, Lee H, et al.Effects of molybdenum and vanadium addition on tensile and charpy impact properties of API X70 linepipe steels[J]. Metall. Mater. Trans. A, 2007, 38(8): 1731
[18] Huang G, Wu K M.The effect of relaxing on the grain refinement of low carbon high strength microalloyed steel produced by compact strip production[J]. Met. Mater. Int., 2011, 17(5): 847
[19] Shin Y S, Hwang B, Lee S, et al.Effect of notch shape and specimen thickness on drop weight-tear test properties of API X70 and X80 line-pipe steels[J]. Metall. Mater .Trans. A, 2007, 38(3): 537
[20] Wang B.Study on the fracture behavior of the large deformation pipeline steel[D]. Xi'an: Xi'an Shiyou University, 2014(王博. 大变形管线钢的断裂行为研究[D]. 西安: 西安石油大学, 2014)
[21] Jiang Z H, Wang P, Li D Z, et al.Effect of tempering temperature on the microstructure and mechanical properties of granular bainite in 2.25Cr-1Mo-0.25V steel[J]. Acta Metall. Sin., 2015, 51(8): 925(蒋中华, 王培, 李殿中等. 回火温度对2.25Cr-1Mo-0.25V钢粒状贝氏体显微组织和力学性能的影响[J]. 金属学报, 2015, 51(8): 925
[22] Zhong Y, Xiao F R, Zhang J W, et al.In site TEM study of the effect of MA films at grain boundaries on crack propagation in an ultra-fine acicular ferrite pipeline steel[J]. Acta Mater., 2006, 54(2): 435
[23] Shin S Y, Hwang B, Kim S, et al.Fracture toughness analysis in transition temperature region of API X70 pipeline steels[J]. Mater. Sci. Eng. A, 2006, 429(1-2): 196
[24] Miller L E, Smith G C.Tensile fractures in carbon steels[J]. Iron Steel Inst. 1970, 208: 998
[25] Nohava J, Hau?ild P, Karlík M, et al.Electron backscattering diffraction analysis of secondary cleavage cracks in a reactor pressure vessel steel[J]. Mater. Charact., 2003, 49(3): 211
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!