Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (11): 818-826    DOI: 10.11901/1005.3093.2016.497
Orginal Article Current Issue | Archive | Adv Search |
Investigation on Anti-corrosion Mechanism of 8-hydro-xyquinoline Modified Nano-silica/epoxy Coatings
Wei SUN1, Fuchun LIU1(), Ganxin JIE2, Wei KE1, En-Hou HAN1, Ju WANG2, Haijun HUANG2, Yu DU1
1 Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China.
2 State Key Laboratory of Environmental Adaptability for Industrial Products, China National Electric Apparatus Research Institute Co., Ltd, Guangzhou 510633, China.
Cite this article: 

Wei SUN, Fuchun LIU, Ganxin JIE, Wei KE, En-Hou HAN, Ju WANG, Haijun HUANG, Yu DU. Investigation on Anti-corrosion Mechanism of 8-hydro-xyquinoline Modified Nano-silica/epoxy Coatings. Chinese Journal of Materials Research, 2017, 31(11): 818-826.

Download:  HTML  PDF(4282KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Composites of 8-hydroxyquinoline/nano-SiO2 were prepared with nano-SiO2 as carrier and 8-hydroxyquinoline as modifier. Then the composistes were blended with epoxy resin to form the nanocomposite epoxy coating. The corrosion performance of the prepared composite coating was investigated by means of salt spray test and electrochemical impedance spectroscopy. Results show that composites of 8-hydroxyquinoline/nano-SiO2 can improve the corrosion resistance of the epoxy coatings, among others the coating with 5% (mass fraction) 8-hydroxyquinoline/nano-SiO2 was the optimal. The relevant mechanism may be ascribed to the fact that 8-hydroxyquinoline could release from pores of nano-SiO2 and then penetrate to the interface coating/steel substrate forming Fe-containing complex, thus improving the corrosion resistance of the steel substrate.

Key words:  materials failure and protection      wind power equipment      nano-container      sustained release mechanism      steel substrate     
Received:  07 November 2016     
Fund: Supported by Key Technology of Corrosion Control on Wind Power Equipment Academician Workstation Project (No. 2013B090400023), Guangzhou Industry-university-research Collaborative Innovation Alliance Special Project (No. 201604046014)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.497     OR     https://www.cjmr.org/EN/Y2017/V31/I11/818

Fig.1  TEM image of nano-SiO2 and HQ-SiO2 particles (a) nano-SiO2; (b) HQ-SiO2
Fig.2  Different time of release curve the 8 - hydroxyquinoline from nano-SiO2
Sample 1 2 3 4 5 Mean
B0 6.8 6.7 6.8 6.5 6.1 6.58
B1 7.2 7.2 7.3 7.6 6.9 7.24
B3 7.5 7.8 7.5 7.9 8.2 7.78
B5 7.6 7.8 8.3 8.5 8.7 8.18
Table 1  Pull-off test results of adhesion of the B0、B1、B3 and B5 coatings (MPa)
Fig.3  Photos of the coated panels after salt spray tests for 1000 h (a) B0, (b) B1, (c) B3 and (d) B5
Sample Small bubble area% Mid-bubble area/% Big bubble area/% Average width of corrosion expansion/mm
(a) 85 5 0 7.6
(b) 15 1 0 7.3
(c) 10 1 0 5.6
(d) 0 1 0 6.4
Table 2  Corrosion situation of coated panels after salt spray tests for 2000 h
Fig.4  SEM images of the scribe sections of (a) B0, (b) B1, (c) B3 and (d) B5 coated samples after 1000 h salt spray tests
Fig.5  Bode plots of coated panels with different loading of HQ-SiO2 after different immersing times in 3.5%NaCl solution (a) B0, (b) B1, (c) B3 and (d) B5
Fig.6  EEC models for the coated panels at different immersion stages,(a) equivalent circuit for the intact coating has one time constant and(b)equivalent circuit for the coating have two-time constant
Fig.7  Change of coating resistance with immersion time
Fig.8  Current mapping of the 5% HQ-SiO2 epoxy coated steel with an artificial defect immersed in 3.5%NaCl solution Current density distribution
Fig.9  IR diagrams, (a) HQ,(b) HQ- SiO2, (c) corrosion products
[1] Funke W.Toward a unified view of the mechanism responsible for paint defects by metallic corrosion[J]. Industrial & Engineering Chemistry Product Research & Development, 1985, 24(3): 343
[2] Y. Gan,Y. Li, H. C. Lin.Experimental studies on the local corrosion of low alloy steels in 3.5% NaCl[J]. Corrosion Science, 2001, 43(3): 397
[3] Khramov A N, Voevodin N N, Balbyshev V N. Hybrid organ-ceramic corrosion protection coatings with encapsulated organic corrosion inhibitors[J]. Thin Solid Films, 2004, 447/448: 549
[4] Zheludkevich M L, Yasakau K A, Poznyak S K.Triazole and thiazole derivatives as corrosion inhibitors for AA2024 aluminum alloy[J]. Corrosion Science, 2005, 47(12): 3368
[5] Tianhui Hu, Hongwei Shi, Tao Wei, et al.Cerium titrate as a corrosion inhibitor for AA 2024-T3[J]. Corrosion Science, 2015, 95: 152
[6] Zong Q, Wang L, Sun W.Active deposition of bis (8-hydroxyquinoline) magnesium coating for enhanced corrosion resistance of AZ91D alloy[J]. Corrosion Science, 2014, 89: 127
[7] Shen S, Zuo Y, Zhao X.The effects of 8-hydroxyquinoline on corrosion performance of a Mg-rich coating on AZ91D magnesium alloy[J]. Corrosion Science, 2013, 76(10): 275
[8] Hongwei Shi, Fuchun Liu, Lihong Yang, et al.Characterization of protective performance of epoxy reinforced with nanometer sized TiO2 and SiO2[J]. Progress in Organic Coatings, 2008, 62(4): 359
[9] Li Y Z, Xu W, Zhang W K, et al.Foliate functionalized carbon nanotubes for delivery and controlled release of ibuprofen[J]. Functional materials, 13(46), 13070(2015)(李育珍, 徐伟, 张卫珂等. 叶酸功能化碳纳米管负载布洛芬及可控释放[J]. 功能材料, 2015, 13(46): 3070
[10] Wei M, Jiang W F, Wang H L.Synthesis and corrosion inhibition effect of 8-hydroxyquinoline azole derivatives to carbon steel in hydrochloric acid solution[J]. Corrosion & Protection, 2014, 35(2): 142(魏萌, 姜文凤, 王慧龙. 新型8-羟基喹啉唑类化合物对HCl介质中碳钢的缓蚀作用[J]. 腐蚀与防护, 2014, 35(2): 142)
[11] Zhao X N.The researching present situation and development of organic inhibition of copper[J]. Science & Technology, 2008, 21(1): 38(赵小能. 有机类铜缓蚀剂的现状研究与发展[J]. 科技信息,2008, 21(1): 38)
[1] GAO Wei, LIU Jiangnan, WEI Jingpeng, YAO Yuhong, YANG Wei. Structure and Properties of Cu2O Doped Micro Arc Oxidation Coating on TC4 Titanium Alloy[J]. 材料研究学报, 2022, 36(6): 409-415.
[2] YANG Liuyang, TAN Zhuowei, LI Tongyue, ZHANG Dalei, XING Shaohua, JU Hong. Dynamic Corrosion Behavior of Pipeline Defects Characterized by WBE and EIS Testing Techniques[J]. 材料研究学报, 2022, 36(5): 381-391.
[3] LI Yufeng, ZHANG Nianfei, LIU Lishuang, ZHAO Tiantian, GAO Wenbo, GAO Xiaohui. Preparation of Phosphorus-containing Graphene and Corrosion Resistance of Composite Coating[J]. 材料研究学报, 2022, 36(12): 933-944.
[4] CHEN Yiwen, WANG Cheng, LOU Xia, LI Dingjun, ZHOU Ke, CHEN Minghui, WANG Qunchang, ZHU Shenglong, WANG Fuhui. Protective Performance of a Novel Inorganic Composite Coatings on CB2 Ferritic Heat Resistant Steel at 650℃ in Oxygen Flow with Water Vapor[J]. 材料研究学报, 2021, 35(9): 675-681.
[5] ZHANG Dalei, WEI Enze, JING He, YANG Liuyang, DOU Xiaohui, LI Tongyue. Construction of Super-hydrophobic Structure on Surface of Super Ferritic Stainless Steel B44660 and Its Corrosion Resistance[J]. 材料研究学报, 2021, 35(1): 7-16.
[6] WANG Guanyi, CHE Xin, ZHANG Haoyu, CHEN Lijia. Low-cycle Fatigue Behavior of Al-5.4Zn-2.6Mg-1.4Cu Alloy Sheet[J]. 材料研究学报, 2020, 34(9): 697-704.
[7] HUANG Anran, ZHANG Wei, WANG Xuelin, SHANG Chengjia, FAN Jiajie. Corrosion Behavior of Ferritic Stainless Steel in High Temperature Urea Environment[J]. 材料研究学报, 2020, 34(9): 712-720.
[8] GONG Weiwei, YANG Bingkun, CHEN Yun, HAO Wenkui, WANG Xiaofang, CHEN Hao. In Situ SECM Observation of Corrosion Behavior of Carbon Steel at Defects of Epoxy Coating under AC Current Conditions[J]. 材料研究学报, 2020, 34(7): 545-553.
[9] ZHU Jinyang, TAN Chengtong, BAO Feihu, XU Lining. CO2 Corrosion Behaviour of A Novel Al-containing Low Cr Steel in A Simulated Oilfield Formation Water[J]. 材料研究学报, 2020, 34(6): 443-451.
[10] LIANG Xinlei, LIU Qian, WANG Gang, WANG Zhenyu, HAN En-Hou, WANG Shuai, YI Zuyao, LI Na. Study on Corrosion Resistance and Thermal Insulation Properties of Graphene Oxide Modified Epoxy Thermal Insulation Coating[J]. 材料研究学报, 2020, 34(5): 345-352.
[11] WANG Zhihu,ZHANG Jumei,BAI Lijing,ZHANG Guojun. Effect of Hydrothermal Treatment on Microstructure and Corrosion Resistance of Micro-arc Oxidization Ceramic Layer on AZ31 Mg-alloy[J]. 材料研究学报, 2020, 34(3): 183-190.
[12] YIN Qi,LIU Miaoran,LIU Yuwei,PAN Chen,WANG Zhenyao. Effect of MgCl2 Deposite on Simulated Atmospheric Corrosion of Zn via Wet-dry Altertnating Corrosion Test[J]. 材料研究学报, 2019, 33(9): 705-712.
[13] SHANG Baihui,MA Yuantai,MENG Meijiang,LI Ying. Characterisation of Passive Film on HRB400 Steel Rebar in Curing Stage of Concrete[J]. 材料研究学报, 2019, 33(9): 659-665.
[14] Zhuman SONG,Rui LI,Miao QIAN,Wenbo SHI,Ke QIAN,Heng MA,Qingyin CHEN,Guangping ZHANG. Optimizing Prestress of Fatigue Property-dominated 8.8-grade Bolts[J]. 材料研究学报, 2019, 33(8): 629-634.
[15] Xu ZHANG,Shanping LU. Corrosion Behavior of Ni-based Weld Metals with Different Mo Content in a Nitric Acid Aqueous Solution[J]. 材料研究学报, 2019, 33(6): 401-408.
No Suggested Reading articles found!